资源简介
本书详尽地介绍了计算机安全的理论与实践,阐释了该领域最基本和最普遍的知识,包括计算机安全的本质和面临的挑战,策略与安全的关系,密码学的角色与应用,策略实现机制,保障技术和方法学,脆弱性分析和入侵检测等。同时把计算机系统、网络、人为因素和密码学等概念融为一体,本书可作为信息安全、计算机等相关专业本科生、研究生的教科书和学习参考书,也可作为维护网络和计算机系统安全的管理人员、信息安全技术开发人员的工具书和参考书。
The importance of computer security has increased dramatically during the past few years. Bishop provides a monumental reference for the theory and practice of computer security. This is a textbook intended for use at the advanced undergraduate and introductory graduate levels, non-University training courses, as well as reference and self-study for security professionals. Comprehensive in scope, this covers applied and practical elements, theory, and the reasons for the design of applications and security techniques. Bishop treats the management and engineering issues of computer. Excellent examples of ideas and mechanisms show how disparate techniques and principles are combined (or not) in widely-used systems. Features a distillation of a vast number of conference papers, dissertations and books that have appeared over the years, providing a valuable synthesis. This book is acclaimed for its scope, clear and lucid writing, and its combination of formal and theoretical aspects with real systems, technologies, techniques, and policies.
Preface
Goals
Philosophy
Organization
Roadmap
Dependencies
Background
UndergraduateLevel
GraduateLevel
Practitioners
SpecialAcknowledgment
Acknowledgments
PART1:INTRODUCTION
ChapterIAnOverviewofComputerSecurity
1.1TheBasicComponents
1.2Threats
1.3PolicyandMechanism
1.4AssumptionsandTrust
1.5Assurance
1.6OperationalIssues
1.7HumanIssues
1.8TyingItAllTogether
1.9Summary
1.10ResearchIssues
1.11FurtherReading
1.12Exercises
PART2:FOUNDATIONS
Chapter2AccessControlMatrix
2.1ProtectionState
2.2AccessControlMatrixModel
2.3ProtectionStateTransitions
2.4Copying,Owning,andtheAttenuationofPrivilege
2.5Summary
2.6ResearchIssues
2.7FurtherReading
2.8Exercises
Chapter3FoundationalResults
3.1TheGeneralQuestion
3.2BasicResults
3.3TheTake-GrantP
代码片段和文件信息
import pandas as pd
import jieba
import numpy
pd.set_option(‘display.height‘ 9999)
pd.set_option(‘display.max_rows‘ 9999)
pd.set_option(‘display.max_columns‘ 9999)
pd.set_option(‘display.width‘ 9999)
df_news = pd.read_table(“./data/val.txt“ names=[‘category‘ ‘theme‘ ‘URL‘ ‘content‘] encoding=“utf-8“)
df_news = df_news.dropna()#删除有缺失值的行
# print(df_news.shape) # (5000 4)
content = df_news[“content“].values.tolist() # 新闻内容list
# print(content[1000])
content_S = [] # 新闻内容分词之后的list
for line in content:
current_segment = jieba.lcut(line)
if len(current_segment) > 1 and current_segment != “\r\n“:#换行符
content_S.append(current_segment)
# print(content_S[1000])
df_content = pd.Dataframe({“content_S“: content_S})
# print(df_content.head())
stopwords = pd.read_csv(“stopwords.txt“ index_col=False sep=“\t“ quoting=3 names=[‘stopword‘] encoding=‘utf-8‘)
def drop_stopwords(contents stopwords):
‘‘‘去除新闻中的停用词‘‘‘
contents_clean = [] # 新闻中去掉停用词
all_words = [] # 所有词汇的集合(不包括停用词)
for line in contents:
line_clean = []
for word in line:
if word in stopwords:
continue
line_clean.append(word)
all_words.append(word)
contents_clean.append(line_clean)
return contents_clean all_words
contents = df_content[“content_S“].values.tolist()
stopwords = stopwords[“stopword“].values.tolist()
contents_clean all_words = drop_stopwords(contents stopwords)
df_content = pd.Dataframe({“contents_clean“: contents_clean})
df_all_words = pd.Dataframe({‘all_words‘: all_words})
words_count = df_all_words.groupby(by=[‘all_words‘])[‘all_words‘].agg({“count“: numpy.size})
words_count = words_count.reset_index().sort_values(by=[“count“] ascending=False)
# print(words_count.head().values)
‘‘‘
[[‘中‘ 5199]
[‘中国‘ 3115]
[‘说‘ 3055]
[‘S‘ 2646]
[‘万‘ 2390]]
‘‘‘
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams[‘figure.figsize‘] = (10.0 5.0)
wordcloud = WordCloud(font_path=“./data/simhei.ttf“ background_color=“white“ max_font_size=80)
word_frequence = {x[0]: x[1] for x in words_count.head(100).values}
wordcloud = wordcloud.fit_words(word_frequence)
plt.imshow(wordcloud)
plt.show()
‘‘‘TF-IDF :提取关键词‘‘‘
import jieba.analyse
index = 2400
print(df_news[‘content‘][index])
content_S_str = ““.join(content_S[index])
print(“ “.join(jieba.analyse.extract_tags(content_S_str topK=5 withWeight=False)))
‘‘‘LDA :主题模型‘‘‘
from gensim import corpora models similarities
import gensim
# 做映射,相当于词袋
dictionary = corpora.Dictionary(contents_clean)
corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean]
lda = gensim.models.ldamodel.LdaModel(corpus=corpus id2word=dictionary num_topics=20) # num_topics需要得到主题的数量
# 一号分类结果
print(lda.print_topic(1 topn=5)) # 第一类主题
for topic in lda.print_topics(num_topics=20 num_words=5
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-01-06 09:43 chapter16\
目录 0 2018-01-05 20:38 chapter16\data\
文件 10044356 2017-06-14 23:56 chapter16\data\simhei.ttf
文件 9948878 2017-07-25 08:24 chapter16\data\val.txt
文件 365370 2018-01-06 09:13 chapter16\show_Chinese.png
文件 17672 2017-06-14 23:55 chapter16\stopwords.txt
文件 5463 2017-03-03 12:00 chapter16\中文停用词库.txt
文件 6038 2017-03-03 07:38 chapter16\哈工大停用词表.txt
文件 8571 2017-03-03 12:00 chapter16\四川大学机器智能实验室停用词库.txt
文件 5644 2018-01-06 09:43 chapter16\新闻分类任务.py
相关资源
- aspose excel工具-无限license
- aspose-words-18.6-jdk16破解版
- 《射频通信电路》陈邦媛 PDF
- Introduction to Algorithms 3rd 原版pdf by C
- mysql crash course (英文版 pdf)
- ast2500V17.pdf
- GRASP10[1].3.0培训教程(公开).pdf
- pami09-RobustFaceRecognitionviaSparseRepresent
- ASPEN PLUS 10版 物性方法和模型(核心)
- Aspectj程序设计指南.pdf-中文版
- WORD2IMAGE.zip
- Programming Pearls Second Edition(编程珠玑
- 树莓派Raspberry+Pi实战指南 手把手教你
- 爱上Raspberry Pi 中文完整版 pdf
- Aspose Excel Word PPT PDF .dll
-
me
tasploit渗透测试指南(中文完整清 -
精通me
tasploit渗透测试 高清文字版带 - jasperreport 生成pdf实现与打印
- 树莓派(Raspberry+Pi)实战指南 手把手
- 41980468KrisKaspersky:Shellcoder编程揭秘
- aspose实现在线预览pptdocexcelpdf
- Aspose.Pdf 17.7最新破解版,绝对可用
- 使用Aspose组件文档转图片
- Trajectory Planning for Automatic Machines and
- SSH集成JasperReport,支持预览导出Exce导
- Aspose类,PDF转word
- 批量处理doc和pdf水印
- Aspose.Slides v15.3.1破解版
- Aspose16.01及其授权
- Aspose.Words
评论
共有 条评论