资源简介
#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050.h"
MPU6050 accelgyro;
unsigned long now, lastTime = 0;
float dt; //微分时间
int16_t ax, ay, az, gx, gy, gz; //加速度计陀螺仪原始数据
float aax=0, aay=0,aaz=0, agx=0, agy=0, agz=0; //角度变量
long axo = 0, ayo = 0, azo = 0; //加速度计偏移量
long gxo = 0, gyo = 0, gzo = 0; //陀螺仪偏移量
float pi = 3.1415926;
float AcceRatio = 16384.0; //加速度计比例系数
float GyroRatio = 131.0; //陀螺仪比例系数
uint8_t n_sample = 8; //加速度计滤波算法采样个数
float aaxs[8] = {0}, aays[8] = {0}, aazs[8] = {0}; //x,y轴采样队列
long aax_sum, aay_sum,aaz_sum; //x,y轴采样和
float a_x[10]={0}, a_y[10]={0},a_z[10]={0} ,g_x[10]={0} ,g_y[10]={0},g_z[10]={0}; //加速度计协方差计算队列
float Px=1, Rx, Kx, Sx, Vx, Qx; //x轴卡尔曼变量
float Py=1, Ry, Ky, Sy, Vy, Qy; //y轴卡尔曼变量
float Pz=1, Rz, Kz, Sz, Vz, Qz; //z轴卡尔曼变量
void setup()
{
Wire.begin();
Serial.begin(115200);
accelgyro.initialize(); //初始化
unsigned short times = 200; //采样次数
for(int i=0;i<times;i )
{
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值
axo = ax; ayo = ay; azo = az; //采样和
gxo = gx; gyo = gy; gzo = gz;
}
axo /= times; ayo /= times; azo /= times; //计算加速度计偏移
gxo /= times; gyo /= times; gzo /= times; //计算陀螺仪偏移
}
void loop()
{
unsigned long now = millis(); //当前时间(ms)
dt = (now - lastTime) / 1000.0; //微分时间(s)
lastTime = now; //上一次采样时间(ms)
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值
float accx = ax / AcceRatio; //x轴加速度
float accy = ay / AcceRatio; //y轴加速度
float accz = az / AcceRatio; //z轴加速度
aax = atan(accy / accz) * (-180) / pi; //y轴对于z轴的夹角
aay = atan(accx / accz) * 180 / pi; //x轴对于z轴的夹角
aaz = atan(accz / accy) * 180 / pi; //z轴对于y轴的夹角
aax_sum = 0; // 对于加速度计原始数据的滑动加权滤波算法
aay_sum = 0;
aaz_sum = 0;
for(int i=1;i<n_sample;i )
{
aaxs[i-1] = aaxs[i];
aax_sum = aaxs[i] * i;
aays[i-1] = aays[i];
aay_sum = aays[i] * i;
aazs[i-1] = aazs[i];
aaz_sum = aazs[i] * i;
}
aaxs[n_sample-1] = aax;
aax_sum = aax * n_sample;
aax = (aax_sum / (11*n_sample/2.0)) * 9 / 7.0; //角度调幅至0-90°
aays[n_sample-1] = aay; //此处应用实验法取得合适的系数
aay_sum = aay * n_sample; //本例系数为9/7
aay = (aay_sum / (11*n_sample/2.0)) * 9 / 7.0;
aazs[n_sample-1] = aaz;
aaz_sum = aaz * n_sample;
aaz = (aaz_sum / (11*n_sample/2.0)) * 9 / 7.0;
float gyrox = - (gx-gxo) / GyroRatio * dt; //x轴角速度
float gyroy = - (gy-gyo) / GyroRatio * dt; //y轴角速度
float gyroz = - (gz-gzo) / GyroRatio * dt; //z轴角速度
agx = gyrox; //x轴角速度积分
agy = gyroy; //x轴角速度积分
agz = gyroz;
/* kalman start */
Sx = 0; Rx = 0;
Sy = 0; Ry = 0;
Sz = 0; Rz = 0;
for(int i=1;i<10;i )
{ //测量值平均值运算
a_x[i-1] = a_x[i]; //即加速度平均值
Sx = a_x[i];
a_y[i-1] = a_y[i];
Sy = a_y[i];
a_z[i-1] = a_z[i];
Sz = a_z[i];
}
a_x[9] = aax;
Sx = aax;
Sx /= 10; //x轴加速度平均值
a_y[9] = aay;
Sy = aay;
Sy /= 10; //y轴加速度平均值
a_z[9] = aaz;
Sz = aaz;
Sz /= 10;
for(int i=0;i<10;i )
{
Rx = sq(a_x[i] - Sx);
Ry = sq(a_y[i] - Sy);
Rz = sq(a_z[i] - Sz);
}
Rx = Rx / 9; //得到方差
Ry = Ry / 9;
Rz = Rz / 9;
Px = Px 0.0025; // 0.0025在下面有说明...
Kx = Px / (Px Rx); //计算卡尔曼增益
agx = agx Kx * (aax - agx); //陀螺仪角度与加速度计速度叠加
Px = (1 - Kx) * Px; //更新p值
Py = Py 0.0025;
Ky = Py / (Py Ry);
agy = agy Ky * (aay - agy);
Py = (1 - Ky) * Py;
Pz = Pz 0.0025;
Kz = Pz / (Pz Rz);
agz = agz Kz * (aaz - agz);
Pz = (1 - Kz) * Pz;
/* kalman end */
Serial.print(agx);Serial.print(",");
Serial.print(agy);Serial.print(",");
Serial.print(agz);Serial.println();
}
#include "I2Cdev.h"
#include "MPU6050.h"
MPU6050 accelgyro;
unsigned long now, lastTime = 0;
float dt; //微分时间
int16_t ax, ay, az, gx, gy, gz; //加速度计陀螺仪原始数据
float aax=0, aay=0,aaz=0, agx=0, agy=0, agz=0; //角度变量
long axo = 0, ayo = 0, azo = 0; //加速度计偏移量
long gxo = 0, gyo = 0, gzo = 0; //陀螺仪偏移量
float pi = 3.1415926;
float AcceRatio = 16384.0; //加速度计比例系数
float GyroRatio = 131.0; //陀螺仪比例系数
uint8_t n_sample = 8; //加速度计滤波算法采样个数
float aaxs[8] = {0}, aays[8] = {0}, aazs[8] = {0}; //x,y轴采样队列
long aax_sum, aay_sum,aaz_sum; //x,y轴采样和
float a_x[10]={0}, a_y[10]={0},a_z[10]={0} ,g_x[10]={0} ,g_y[10]={0},g_z[10]={0}; //加速度计协方差计算队列
float Px=1, Rx, Kx, Sx, Vx, Qx; //x轴卡尔曼变量
float Py=1, Ry, Ky, Sy, Vy, Qy; //y轴卡尔曼变量
float Pz=1, Rz, Kz, Sz, Vz, Qz; //z轴卡尔曼变量
void setup()
{
Wire.begin();
Serial.begin(115200);
accelgyro.initialize(); //初始化
unsigned short times = 200; //采样次数
for(int i=0;i<times;i )
{
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值
axo = ax; ayo = ay; azo = az; //采样和
gxo = gx; gyo = gy; gzo = gz;
}
axo /= times; ayo /= times; azo /= times; //计算加速度计偏移
gxo /= times; gyo /= times; gzo /= times; //计算陀螺仪偏移
}
void loop()
{
unsigned long now = millis(); //当前时间(ms)
dt = (now - lastTime) / 1000.0; //微分时间(s)
lastTime = now; //上一次采样时间(ms)
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值
float accx = ax / AcceRatio; //x轴加速度
float accy = ay / AcceRatio; //y轴加速度
float accz = az / AcceRatio; //z轴加速度
aax = atan(accy / accz) * (-180) / pi; //y轴对于z轴的夹角
aay = atan(accx / accz) * 180 / pi; //x轴对于z轴的夹角
aaz = atan(accz / accy) * 180 / pi; //z轴对于y轴的夹角
aax_sum = 0; // 对于加速度计原始数据的滑动加权滤波算法
aay_sum = 0;
aaz_sum = 0;
for(int i=1;i<n_sample;i )
{
aaxs[i-1] = aaxs[i];
aax_sum = aaxs[i] * i;
aays[i-1] = aays[i];
aay_sum = aays[i] * i;
aazs[i-1] = aazs[i];
aaz_sum = aazs[i] * i;
}
aaxs[n_sample-1] = aax;
aax_sum = aax * n_sample;
aax = (aax_sum / (11*n_sample/2.0)) * 9 / 7.0; //角度调幅至0-90°
aays[n_sample-1] = aay; //此处应用实验法取得合适的系数
aay_sum = aay * n_sample; //本例系数为9/7
aay = (aay_sum / (11*n_sample/2.0)) * 9 / 7.0;
aazs[n_sample-1] = aaz;
aaz_sum = aaz * n_sample;
aaz = (aaz_sum / (11*n_sample/2.0)) * 9 / 7.0;
float gyrox = - (gx-gxo) / GyroRatio * dt; //x轴角速度
float gyroy = - (gy-gyo) / GyroRatio * dt; //y轴角速度
float gyroz = - (gz-gzo) / GyroRatio * dt; //z轴角速度
agx = gyrox; //x轴角速度积分
agy = gyroy; //x轴角速度积分
agz = gyroz;
/* kalman start */
Sx = 0; Rx = 0;
Sy = 0; Ry = 0;
Sz = 0; Rz = 0;
for(int i=1;i<10;i )
{ //测量值平均值运算
a_x[i-1] = a_x[i]; //即加速度平均值
Sx = a_x[i];
a_y[i-1] = a_y[i];
Sy = a_y[i];
a_z[i-1] = a_z[i];
Sz = a_z[i];
}
a_x[9] = aax;
Sx = aax;
Sx /= 10; //x轴加速度平均值
a_y[9] = aay;
Sy = aay;
Sy /= 10; //y轴加速度平均值
a_z[9] = aaz;
Sz = aaz;
Sz /= 10;
for(int i=0;i<10;i )
{
Rx = sq(a_x[i] - Sx);
Ry = sq(a_y[i] - Sy);
Rz = sq(a_z[i] - Sz);
}
Rx = Rx / 9; //得到方差
Ry = Ry / 9;
Rz = Rz / 9;
Px = Px 0.0025; // 0.0025在下面有说明...
Kx = Px / (Px Rx); //计算卡尔曼增益
agx = agx Kx * (aax - agx); //陀螺仪角度与加速度计速度叠加
Px = (1 - Kx) * Px; //更新p值
Py = Py 0.0025;
Ky = Py / (Py Ry);
agy = agy Ky * (aay - agy);
Py = (1 - Ky) * Py;
Pz = Pz 0.0025;
Kz = Pz / (Pz Rz);
agz = agz Kz * (aaz - agz);
Pz = (1 - Kz) * Pz;
/* kalman end */
Serial.print(agx);Serial.print(",");
Serial.print(agy);Serial.print(",");
Serial.print(agz);Serial.println();
}
代码片段和文件信息
- 上一篇:数据结构教程第五版李春葆课后习题答案(第3章栈和队列)
- 下一篇:01背包问题回溯法
相关资源
- 《数据结构与算法—C语言版》线下题
- 邓俊辉C语言算法集合
- 许士良常用算法合集
- 银行家算法实验报告.docx
- 无线传感器网络定位算法代码大全
- DES两密三重(DES加密算法)
- 《数据结构(c语言版)》pdf 严蔚敏
- stm32四轴飞行器mpu6050+飞控
- STM32F103获取MPU6050数据
- PID控制算法的C语言实现(完整版)
- 冒泡排序,完整实现排序过程
- MD5加密算法C++实现
- 图像压缩算法
- c++ 图像去雾算法
- Visual c++数字图像处理典型算法及随书
- RC4加解密算法
- 经典算法
- 算法
- Rijndael算法加密解密
- 银行家算法Banker-s_Algorithm
- UDS安全算法动态库dll工程
- 《数据结构与算法分析:C语言描述原
- 实现按照姓名进行排序的算法
- C语言经典数据结构算法总结 红黑树
- 编程之美.pdf(诸多算法的集合)
- 算法 面试
- 遗传、禁忌、模拟退火等算法背包问
- C++遗传算法
- 基于盲目搜索的宽度优先算法的八数
- c++ 银行家算法
评论
共有 条评论