资源简介
专业的用来计算dcc的程序代码,用MATLAB运行即可
代码片段和文件信息
function [parameters ll Ht VCV scores diagnostics]=dcc(datadataAsymmlnpoqgjrTypemethodcompositestartingValsoptions)
% Estimation of scalar DCC(mn) and ADCC(mln) multivarate volatility model with with TARCH(poq)
% or GJRGARCH(poq) conditional variances
%
% USAGE:
% [PARAMETERS] = dcc(DATA[]MLN)
% [PARAMETERSLLHTVCVSCORESDIAGNOSTICS] = dcc(DATADATAASYMMLNPOQ...
% GJRTYPEMETHODCOMPOSITESTARTINGVALSOPTIONS)
%
% INPUTS:
% DATA - A T by K matrix of zero mean residuals -OR-
% K by K by T array of covariance estimators (e.g. realized covariance)
% DATAASYM - [OPTIONAL] K by K by T array of asymmetric covariance estimators only needed if
% DATA is 3-dimensional and O>0 or L>0
% M - Order of symmetric innovations in DCC model
% L - Order of asymmetric innovations in ADCC model
% N - Order of lagged correlation in DCC model
% P - [OPTIONAL] Positive scalar integer representing the number of symmetric innovations in the
% univariate volatility models. Can also be a K by 1 vector containing the lag length
% for each series. Default is 1.
% O - [OPTIONAL] Non-negative scalar integer representing the number of asymmetric innovations in the
% univariate volatility models. Can also be a K by 1 vector containing the lag length
% for each series. Default is 0.
% Q - [OPTIONAL] Non-negative scalar integer representing the number of conditional covariance lags in
% the univariate volatility models. Can also be a K by 1 vector containing the lag length
% for each series. Default is 1.
% GJRTYPE - [OPTIONAL] Either 1 (TARCH/AVGARCH) or 2 (GJR-GARCH/GARCH/ARCH). Can also be a K by 1 vector
% containing the model type for each for each series. Default is 2.
% METHOD - [OPTIONAL] String one of ‘3-stage‘ (Default) or ‘2-stage‘. Determines whether
% the model is estimated using the 3-stage estimator or if the correlation intercepts
% are jointly estimated along with the dynamic parameters.
% COMPOSITE - [OPTIONAL] String value either ‘None‘ (Default) ‘Diagonal‘ or ‘Full‘. None
% uses standard QMLE. ‘Diagonal‘ and ‘Full‘ both uses composite likelihood where
% ‘Diagonal‘ uses all pairs of the form ii+1 while ‘Full‘ uses all pairs.
% STARTINGVALS - [OPTIONAL] Vector of starting values to use. See parameters and COMMENTS.
% OPTIONS - [OPTIONAL] Options to use in the model optimization (fmincon)
%
% OUTPUTS:
% PARAMETERS - Estimated parameters. Output depends on METHOD.
% 3-stage: [VOL(1) ... VOL(K) corr_vech(R)‘ vech(N)‘ alpha gamma beta]
% 2-stage: [VOL(1) ...
- 上一篇:支持向量机SVMmatlab代码
- 下一篇:自适应匹配追踪matlab程序
评论
共有 条评论