资源简介
用simulink进行的六自由度平台的仿真。
代码片段和文件信息
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multivariable controller synthesis for the Stewart platform. %
% %
% Authors(s) G.W. Wood and J.M. Wendlandt %
% %
% Copyright The MathWorks Inc. %
% %
% This m-script synthesises a robust multivariable controller for %
% the linearized plant model of the Stewart platform. The %
% synthesis procedure makes use of the H_infinity loopshaping %
% design procedure originating in (1) and is closely related to %
% the notion of achieving optimal robustness in the gap metric %
% (2). All commands are standard commands in the Mu-Tools toolbox. %
% %
% (1) K.Glover and D.C McFarlane. Robust stabilization of normalised %
% comprime factor plant descriptions with H_infinity bounded %
% uncertainty. IEEE Trans. on Automatic Control34:821-830 1989. %
% %
% (2) T.T. Georgiou and M.C. Smith. Optimal robustness in the gap %
% metric. IEEE Trans. on Automatic Control35(6):673-687 1990. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linearization.
sim(‘StewartPlatformEquilibrium‘); nomForces = Forces‘; % Extract the equilibrating forces.
[ABCD] = linmod(‘StewartPlatformPlant‘[]nomForces); % Linearize the model about the equilibrium configuration.
[ABCD] = minreal(ABCD); % Obtain a minimal realization of the linearized model.
% Synthesis.
Kv = daug(-Kd-Kd-Kd-Kd-Kd-Kd); % Introduce velocity feedback.
P = pck(A[B B]C[D D]); % Pack the state matrices into a model.
P = starp(PKv66); % Close the velocity feedback loop.
w = logspace(-13100);
W1 = nd2sys([Kp Ki][1 0]10); % Loopshaping weight with integral action.
W = daug(W1W1W1W1W1W1); % Apply the same weight to each channel.
Pw = mmult(PW); % Multiply the nominal plant and the loopshaping weight.
wg = frsp(Pww);
vplot(‘livlm‘vsvd(wg)); % Plot the shaped frequency response to check crossover frequency etc.
[syskemaxsysobs] = ncfsyn(Pw1.1‘ref‘); % Synthesis an optimal loopshaping controller.
[AkBkCkDk] = unpck(sysk); % Unpack the state matrices for the controller.
[AwBwCwDw] = unpck(W); % Unpack the state matrices for the weight.
% Compute DC gain equalization matrix.
[ApBpCpDp] = unpck(Pw); % Unpack the state matrics of the weighted plant
Pwn = pck(ApBp[Cp;Cp][Dp;Dp]); % Augment the weighted plant.
cl = starp(Pwnsysk66); % Introduce the feedback controller.
[AB
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1526 2016-09-01 11:00 StewartPlatform\license.txt
文件 15088 2016-09-01 11:00 StewartPlatform\StewartControllers.mdl
文件 3259 2016-09-01 11:00 StewartPlatform\StewartMVController.m
文件 361124 2017-12-14 21:23 StewartPlatform\StewartPlatform.mdl
文件 181152 2017-12-13 14:33 StewartPlatform\StewartPlatform.mdl.original
文件 86826 2016-09-01 11:00 StewartPlatform\StewartPlatform.mdl.r13
文件 23037 2016-09-01 11:00 StewartPlatform\StewartPlatform.txt
文件 25576 2016-09-01 11:00 StewartPlatform\StewartPlatformEquilibrium.mdl
文件 7128 2016-09-01 11:00 StewartPlatform\StewartPlatformHinf.mat
文件 14549 2016-09-01 11:00 StewartPlatform\StewartPlatformLegEquilibrium.mdl
文件 33205 2016-09-01 11:00 StewartPlatform\StewartPlatformPlant.mdl
文件 3752 2017-12-13 15:31 StewartPlatform\StewartPlatformSetup.m
文件 104235 2017-12-09 11:18 StewartPlatform\__Previews\StewartPlatform.mdlPreview
...D.H. 0 2017-12-12 16:10 StewartPlatform\__Previews
目录 0 2017-12-14 21:23 StewartPlatform
----------- --------- ---------- ----- ----
860457 15
评论
共有 条评论