资源简介
Chicken Swarm Optimization(CSO)鸡群优化算法,2014年提出的群智能优化算法。
Bird Swarm Algorithm(BSA)鸟群算法,2015年最新的群智能优化算法。
作为两种全新的群智能优化算法,CSO和BSA都具有简单,良好扩展性的特点,是天然的多种群算法!
http://cn.mathworks.com/matlabce ... 7597-xian-bing-meng
有关算法信息,可在上述网站查询。
希望对大家有用!
代码片段和文件信息
% ------------------------------------------------------------------------
% Bird Swarm Algorithm (BSA) (demo)
% Programmed by Xian-Bing Meng
% Updated at Jun 19 2015.
% Email: x.b.meng12@gmail.com
%
% This is a simple demo version only implemented the basic idea of BSA for
% solving the unconstrained problem namely Sphere function.
%
% The details about BSA are illustratred in the following paper.
% Xian-Bing Meng et al (2015): A new bio-inspXred optimisation algorithm:
% Bird Swarm Algorithm Journal of Experimental & Theoretical
% Artificial Intelligence DOI: 10.1080/0952813X.2015.1042530
%
% The parameters in BSA are presented as follows.
% FitFunc % The objective function
% M % Maxmimal generations (iterations)
% pop % Population size
% dim % Dimension
% FQ % The frequency of birds‘ flight behaviours
% c1 % Cognitive accelerated coefficient
% c2 % Social accelerated coefficient
% a1 a2 % Two paramters which are related to the indirect and direct
% effect on the birds‘ vigilance bahaviors.
%
% Using the default value BSA can be executed using the following code.
% [ bestX fMin ] = BSA
% ------------------------------------------------------------------------
% Main programs
function [ bestX fMin ] = BSA( FitFunc M pop dim FQ c1 c2 a1 a2 )
% Display help
help BSA.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set the default parameters
if nargin < 1
FitFunc = @Sphere;
M = 1000;
pop = 30;
dim = 20;
FQ = 10;
c1 = 1.5;
c2 = 1.5;
a1 = 1;
a2 = 1;
end
% set the parameters
lb= -100*ones( 1dim ); % Lower bounds
ub= 100*ones( 1dim ); % Upper bounds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Initialization
for i = 1 : pop
x( i : ) = lb + (ub - lb) .* rand( 1 dim );
fit( i ) = FitFunc( x( i : ) );
end
pFit = fit; % The individual‘s best fitness value
pX = x; % The individual‘s best position corresponding to the pFit
[ fMin bestIndex ] = min( fit ); % fMin denotes the global optimum
% bestX denotes the position corresponding to fMin
bestX = x( bestIndex : );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Start the iteration.
for iteration = 1 : M
prob = rand( pop 1 ) .* 0.2 + 0.8;%The probability of foraging for food
if( mod( iteration FQ ) ~= 0 )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Birds forage for food or keep vigilance
sumPfit = sum( pFit );
meanP = mean( pX );
for i = 1 : pop
if rand < prob(i)
x( i : ) = x( i : ) + c1 * rand.*(bestX - x( i : ))+ ...
c2 * rand.*( pX(i:) - x( i : ) );
else
person = randiTabu(
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 10236 2015-06-21 12:53 CSO.m
文件 7744 2015-06-21 10:39 BSA.m
----------- --------- ---------- ----- ----
17980 2
评论
共有 条评论