资源简介
使用matlab编写语音识别项目,可以进行实验,也可以在我的项目之上进行改进和改善。
代码片段和文件信息
function checkNNGradients(lambda)
%CHECKNNGRADIENTS Creates a small neural network to check the
%backpropagation gradients
% CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
% backpropagation gradients it will output the analytical gradients
% produced by your backprop code and the numerical gradients (computed
% using computeNumericalGradient). These two gradient computations should
% result in very similar values.
%
if ~exist(‘lambda‘ ‘var‘) || isempty(lambda)
lambda = 0;
end
input_layer_size = 3;
hidden_layer_size = 5;
num_labels = 3;
m = 5;
% We generate some ‘random‘ test data
Theta1 = debugInitializeWeights(hidden_layer_size input_layer_size);
Theta2 = debugInitializeWeights(num_labels hidden_layer_size);
% Reusing debugInitializeWeights to generate X
X = debugInitializeWeights(m input_layer_size - 1);
y = 1 + mod(1:m num_labels)‘;
% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];
% Short hand for cost function
costFunc = @(p) nnCostFunction(p input_layer_size hidden_layer_size ...
num_labels X y lambda);
[cost grad] = costFunc(nn_params);
numgrad = computeNumericalGradient(costFunc nn_params);
% Visually examine the two gradient computations. The two columns
% you get should be very similar.
disp([numgrad grad]);
fprintf([‘The above two columns you get should be very similar.\n‘ ...
‘(Left-Your Numerical Gradient Right-Analytical Gradient)\n\n‘]);
% Evaluate the norm of the difference between two solutions.
% If you have a correct implementation and assuming you used EPSILON = 0.0001
% in computeNumericalGradient.m then diff below should be less than 1e-9
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf([‘If your backpropagation implementation is correct then \n‘ ...
‘the relative difference will be small (less than 1e-9). \n‘ ...
‘\nRelative Difference: %g\n‘] diff);
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-04-21 13:57 Speech_Recognition-master\
文件 26 2018-04-21 13:57 Speech_Recognition-master\README.md
文件 40134 2018-04-21 13:57 Speech_Recognition-master\SpeechRecognizer.fig
文件 5119 2018-04-21 13:57 Speech_Recognition-master\SpeechRecognizer.m
文件 3431 2018-04-21 13:57 Speech_Recognition-master\Speech_Neural_Network_Classifier.m
文件 1979 2018-04-21 13:57 Speech_Recognition-master\Speech_one_vs_all_Classifier.m
文件 2257 2018-04-21 13:57 Speech_Recognition-master\Speech_single_hidden_la
文件 1443 2018-04-21 13:57 Speech_Recognition-master\Speech_softmax_Classifier.m
文件 1950 2018-04-21 13:57 Speech_Recognition-master\checkNNGradients.m
文件 1295 2018-04-21 13:57 Speech_Recognition-master\computeNumericalGradient.m
文件 841 2018-04-21 13:57 Speech_Recognition-master\debugInitializeWeights.m
文件 4402 2018-04-21 13:57 Speech_Recognition-master\dum_nncostfunction.m
文件 609 2018-04-21 13:57 Speech_Recognition-master\dum_predict.m
文件 511 2018-04-21 13:57 Speech_Recognition-master\features.m
文件 8749 2018-04-21 13:57 Speech_Recognition-master\fmincg.m
目录 0 2018-04-21 13:57 Speech_Recognition-master\lib\
文件 1 2018-04-21 13:57 Speech_Recognition-master\lib\.gitkeep
目录 0 2018-04-21 13:57 Speech_Recognition-master\lib\lib\
目录 0 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\
文件 1624 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\AUTHORS.txt
文件 3862 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\ChangeLog.txt
文件 1551 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\LICENSE_BSD.txt
文件 19369 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\README.txt
文件 881 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\jsonopt.m
文件 18732 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\loadjson.m
文件 15574 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\loadubjson.m
文件 771 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\mergestruct.m
文件 17462 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\savejson.m
文件 16123 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\saveubjson.m
文件 1094 2018-04-21 13:57 Speech_Recognition-master\lib\lib\jsonlab\varargin2struct.m
文件 1195 2018-04-21 13:57 Speech_Recognition-master\lib\lib\makeValidFieldName.m
............此处省略67个文件信息
- 上一篇:用matlab编写的二维最大熵和最小交叉熵实现图像的分割
- 下一篇:孤立语音识别
相关资源
- 孤立语音识别
- dwt算法matlab实现
- 基于MATLAB实现说话人识别含源程序
- 基于MATLAB的语音识别系统的设计实现
- Matlab男女声在线识别系统
- MATLAB环境下的基于HMM模型的语音识别
- 基于MATLAB的数字语音识别
- 基于MATLAB实现的说话人识别程序,分
- MATLAB语音识别系统含源代码
- 毕设 开题报告
- 说话人识别和确认系统Matlab).rar
- svm分类器的汉语声调识别
- GMM,HMM的语音识别,说话人识别源码
- 语音识别算法matlab 源代码!完整!可
- 基于HMM和DTW算法的孤立词识别
- 孤立词语音识别系统的MATLAB实现
- 含神经网络、卷积神经网络、深度信
- HMMforspeechrecogntion 一个可执行的HMM语音
- VQ-Matlab 基于矢量量化的孤立词语音识
- speechRHMM HMM语音识别的matlab程序
- HMMshuziyuyinshibie 基于HMM的数字语音识别
- mfccPSVM 本实例程序是基于matlab的语音
- test-one 语音识别
- DTW 语音识别的matlab仿真
- Desktop 语音识别
- 基于DTW算法的语音识别原理与Matlab实
- 基于语音识别的信号灯图像模拟控制
- matlab实现语音识别思路
- 语音识别端点检测Matlab代码
- 用matlab实现语音识别的算法
评论
共有 条评论