-
大小: 6KB文件类型: .m金币: 1下载: 0 次发布日期: 2021-05-25
- 语言: Matlab
- 标签: 矩量法 Pocklington 积分方程
资源简介
矩量法计算Pocklington积分方程以天线为例
代码片段和文件信息
%% 开始
function pocklington_rgtx
%% 初始化参数
clear all; close all; clc;
c=3e8; % 光速
f=1e9; % 频率
w=2*pi*f; % 角频率
e0=8.85e-12; % 介电常数
u0=4*pi*1e-7; % 磁导率
r=c/f; % 波长
a=0.0001*r; % 半径
L=0.5*r; % 振子长度
k=2*pi/r; % 波数
N=31; % 分段数
dl=L/(N+1); % 每段长度
l=L/2-dl/2;
lz=-l:dl:l;
lzs=lz(1:N); % 每一小段的起点坐标
lzm=lz(1:N)+dl/2; % 每一小段的中点坐标
lze=lz(2:N+1); % 每一小段的终点坐标
%% 离散化
fi=log(dl/a)/(2*pi*dl)-k/(4*pi)*1i;
fi_1=exp(-k*dl*1i)/(4*pi*dl);
fi_2=exp(-k*2*dl*1i)/(8*pi*dl);
z=ones(NN);
for m=1:N
for n=1:N
if m==n
fi1=fi;fi2=fi_1;fi3=fi_1;
z(mn)=((2-k^2*dl^2)*fi1-fi2-fi3)/(1i*w*e0);
elseif abs(m-n)==1
fi1=fi_1;fi2=fi;fi3=fi_2;
z(mn)=((2-k^2*dl^2)*fi1-fi2-fi3)/(1i*w*e0);
else
fi1=exp(-k*abs(m-n)*dl*1i)/(4*pi*abs(m-n)*dl);
fi2=exp(-k*abs(m+1-n)*dl*1i)/(4*pi*abs(m+1-n)*dl);
fi3=exp(-k*abs(n+1-m)*dl*1i)/(4*pi*abs(n+1-m)*dl);
z(mn)=((2-k^2*dl^2)*fi1-fi2-fi3)/(1i*w*e0);
end
end
end
%% 计算电流
V=zeros(N1);
V((N+1)/2)=1;
I=z\V;
Z_in=1/I((N+1)/2);
disp([‘输入阻抗 = ‘num2str(Z_in)]);
I_amp=abs(I); Max=max(I_amp);
Iunit2=[0;I_amp/Max(1);0]; % 两端零电流
figure(1);
h=0:dl/r:L/r;
Ithe=sin(pi*h*r/L); % 半波阵子电流解析值
plot(hIunit2‘b‘hIthe‘r‘‘linewidth‘2);
legend(‘pocklinton‘‘解析值‘);grid on;
xlabel(‘电长度L/\lambda‘);ylabel(‘归一化电流‘);
%% 画方向图
theta=0:0.01:2*pi;
abs_f=zeros(1length(theta));
for n=1:1:N
abs_f=abs_f+I(n)*exp(k*(n-(N+1)/2)*dl*cos(theta)*1i);
end
abs_f=abs(sin(theta)*dl.*abs_f);
Max_f=abs(sum(I)*dl);
Far_patten2=abs_f/Max_f(1);
theta_2=0:0.1:2*pi;
Far_theory=abs((eps+cos(pi/2*cos(theta_2)))./(sin(theta_2)+eps));
figure(2);
polar(thetaFar_patten2‘-b‘);
hold on;polar(theta_2Far_theory‘or‘);hold off;
legend(‘pocklinton‘‘解析值‘);
% title(‘半波振子天线E面方向图‘);
figure(3);
polar(thetaones(1length(theta))‘-b‘);
% title(‘半波振子天线H面方向图‘);
%% 半波振子增益
I_in=I((N+1)/2);
A=(w*u0)^2/(4*pi*sqrt(u0/e0)*real(Z_in)*(abs(I_in))^2);
G_theta=A*abs_f.^2;
Max_gain=max(G_theta)/mean(G_theta);
Max_gain_dB=10*log10(Max_gain);
disp([‘半波振子增益 = ‘sprintf(‘%.4fdB‘ Max_gain_dB)]);
%% 绕杆天线方向图
theta=0:0.01:2*pi;
abs_fx=zeros(1length(theta));
abs_fy=zeros(1length(theta));
for n=1:1:N
abs_fx=abs_fx+I(n)*exp(k*(n-(N+1)/2)*dl*cos(theta)*1i);
abs_fy=abs_fy+I(n)*exp(k*(n-(N+1)/2)*dl*cos(theta-pi/2)*1i);
end
abs_fx=abs(sin(theta)*dl.*abs_fx);
abs_fy=abs(sin(theta-pi/2)*dl.*abs_fy);
F_x=abs_fx/Max_f(1);
F_y=abs_fy/Max_f(1);
figure(4);
polar(thetaF_x‘-b‘);hold on;
polar(thetaF_y‘-r‘);
legend(‘沿x轴‘‘沿y轴‘);
figure(5);
FF_xy = zeros(length(0:pi/20:2*pi)1);
nn = 0;
for iii=0:pi/20:2*pi
F_xy = F_x*cos(iii)+F_y*sin(iii);
nn = nn + 1;
FF_xy(nn) = max(abs(F_xy));
polar(thetaF_xy);hold on;
end
ti
评论
共有 条评论