资源简介
graphcut用于图像分割的matlab代码
代码片段和文件信息
function [Ncut] = graphcuts(IpadMAXVAL)
% function [Ncut] = graphcuts(I)
% Input: I image
% pad: spatial connectivity; eg. 3
% MAXVAL: maximum image value
% Output: Ncut: Binary map 0 or 1 corresponding to image segmentation
I = double(I); [HW] = size(I);
% Find weights between nodes I1 and I2 w = exp(a*abs(I1-I2));
% Set a to have a weight of 0.01 for diff = MAXVAL
a = log(0.01)/MAXVAL; x = [0:MAXVAL/100:MAXVAL]‘; y = exp(a*x);
figure;plot(xy);xlabel(‘intensity diff‘);ylabel(‘weights‘); title(‘weights‘)
ws = 2*pad + 1;
if(ws <= 3)
ws = 3;
end
%Build the weight matrix
disp(‘Building Weight Matrix‘); close all; tic
WM = zeros(H*WH*W); countWM = 0;
for kk = 1:W
for jj = 1:H
mask = logical(zeros(HW));
cs = kk-pad; ce = kk+pad; rs = jj-pad; re = jj+pad;
if(cs<1)
cs = 1;
end;
if(ce>W)
ce = W;
end;
if(rs<1)
rs = 1;
end;
if(re>H)
re = H;
end;
mask(rs:recs:ce) = 1;
idx = find(mask==1);
p = abs(I(idx) - I(jjkk)); p = exp(a*p);
countWM = countWM + 1; WM(countWMidx) = p(:)‘;
end
end
ttime = toc; disp(sprintf(‘Time for generating weight matrix = %f‘ttime)); clear countWM
% Weight between a node and iteself is 0
for jj = 1:H*W
WM(jjjj) = 0;
end;
WM = sparse(WM);
% Shi and Malik Algorithm: second smallest eigen vector
disp(‘Finding Eigen Vector‘);
d = sum(WM2); D = diag(d); tic
B = (D-WM); B = (B+B‘)/2; OPTS.disp = 0;
[vdflag] = eigs(BD2‘SA‘OPTS); ttime = toc;
disp(sprintf(‘Time for finding eigen vector = %f‘ttime)); clear OPTS
y = v(:2);
Ncut = reshape(yHW);
Ncut = Ncut > 0;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1596 2013-03-07 12:18 graphcuts.m
文件 1307 2014-02-12 14:19 license.txt
- 上一篇:GPS单点定位程序
- 下一篇:一维大地电磁测深模拟退火反演
评论
共有 条评论