资源简介
采用切线逼近方法求解IEEE14节点电力系统多目标的无功优化问题,目标为发电机无功总出力和网损。好用的matlab代码。
代码片段和文件信息
function [fxmin xmin] = ORPD_30bus()
clc
clear all
warning off all
global Ybus Yf Yt;
%% define named indices into bus gen branch matrices
[PQ PV REF NONE BUS_I BUS_TYPE PD QD GS BS BUS_AREA VM ...
VA base_KV ZONE VMAX VMIN LAM_P LAM_Q MU_VMAX MU_VMIN] = idx_bus;
[F_BUS T_BUS BR_R BR_X BR_B RATE_A RATE_B RATE_C ...
TAP SHIFT BR_STATUS PF QF PT QT MU_SF MU_ST ...
ANGMIN ANGMAX MU_ANGMIN MU_ANGMAX] = idx_brch;
[GEN_BUS PG QG QMAX QMIN VG Mbase GEN_STATUS PMAX PMIN ...
MU_PMAX MU_PMIN MU_QMAX MU_QMIN PC1 PC2 QC1MIN QC1MAX ...
QC2MIN QC2MAX RAMP_AGC RAMP_10 RAMP_30 RAMP_Q APF] = idx_gen;
[baseMVA bus gen branch areas gencost]=case_ieee30; %Input data of IEEE 30 bus test system
% Determine the value of weight change
w_start = 1; %Initial inertia weight‘s value
w_end = 0.20; %Final inertia weight
w_varyfor = floor(0.7*100);
w_now = w_start;
inertdec = (w_start-w_end)/w_varyfor; %Inertia weight‘s change per iteration
iter=0;
% Initialize size of Swarm no. of control varialbes and Velocity
%size of swarm=50 (user may change it) no. of control variables=vg1 vg2
%vg5vg8 vg11 vg13 (Generator bus voltage in pu) T1 T2 T3 T4
%(Transformer tap position) QC3 QC10 QC24 (Injected reactive power of
%capacitors in MVAR)
Swarm=[unifrnd(0.901.10506)unifrnd(0.951.05504)unifrnd(120503)];
VStep =[unifrnd(0.040.04506)unifrnd(0.0020.002504) unifrnd(44503)];
for i=1:50 % no of particles
global bus gen branch v1 v2 v5 v8 v11 v13
v1=Swarm(i1);
v2=Swarm(i2);
v5=Swarm(i3);
v8=Swarm(i4);
v11=Swarm(i5);
v13=Swarm(i6);
bus(1VM)=Swarm(i1);
bus(2VM)=Swarm(i2);
bus(5VM)=Swarm(i3);
bus(8VM)=Swarm(i4);
bus(11VM)=Swarm(i5);
bus(13VM)=Swarm(i6);
gen(1VG)=Swarm(i1); % gen1
gen(2VG)=Swarm(i2); %gen2
gen(3VG)=Swarm(i3); %gen5
gen(4VG)=Swarm(i4); %gen8
gen(5VG)=Swarm(i5); %gen11
gen(6VG)=Swarm(i6); %gen13
branch(11TAP)=Swarm(i7);% T1 transformer tap
branch(12TAP)=Swarm(i8); %T2
branch(15TAP)=Swarm(i9); %T3
branch(36TAP)=Swarm(i10); %T4
bus(3BS)=Swarm(i11); % QC3 capacitor
bus(10BS)=Swarm(i12); % QC10 capacitor
bus(24BS)=Swarm(i13); % QC24 capacitor
global bus gen branch Yf Yt Ybus
[Ybus Yf Yt] = makeYbus(baseMVA bus branch);% construct Ybus
[MVAbasebusgenbranchsuccesset]=runpf; % run NR load flow
global V
global Ybus
bbb=branch(:[PFQF]).^2; % ans. is P(from)^2 Q(from)^2
ccc=bbb‘;
ddd=(sum(ccc))‘;
eee=sqrt(ddd); %actual values of apparent powers “From bus injection“
fff=branch(:[PTQT]).^2;
ggg=fff‘;
hhh=(sum(ggg))‘;
iii=sqrt(hhh); %actual values of apparent powers “To bus injection“
jjj=[];
for count_1=1:41 % j
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 12082 2013-04-11 19:44 ORPD_30bus.m
文件 160256 2013-04-12 14:43 ORPD_introduction.doc
文件 1313 2013-04-12 05:50 license.txt
相关资源
- 电力系统潮流计算程序(极坐标、带
- MATLAB在电力系统优化计算中的应用
- 电力系统潮流计算仿真
- 电力系统广域时滞系统鲁棒控制的论
- 含风电场的电力系统潮流程序matlab
-
基于Matlab_Simuli
nk电力系统仿真工具 - 矢量化的电力系统潮流计算
- 电力系统潮流计算高斯-赛德尔迭代法
- 蒙特卡洛算法计算电力系统可靠度m
- 电力系统可靠性评估matlab编程
- 电力系统潮流计算MATLAB课程设计源码
-
单相接地故障的matlab仿真 simuli
nk - 电力系统状态估计MATLAB算法
- 应用Matlab计算电力系统的最优潮流
- PST电力系统工具包
- 电力系统仿真包2.1.6的说明手册
- 最新版本3.0的电力系统工具包(PST)
- 求解电力系统经济调度等优化问题的
- 电力系统负荷预测的BP优化
- 粒子群求解电力系统机组组合优化问
- Matlab潮流计算课程设计
- 用yalmip工具包调用cplex求解电力系统机
- 电力系统可靠性评估(matlab实现).
- 基于MATLAB的PQ分解法程序
- 基于BP神经网络的电力系统负荷预测
- Matlab可用于电力系统短期负荷预测的
-
载波通信\\电力系统的MATLAB-SIMUli
n - 电力系统暂态稳定性分析仿真模型
- matpower计算33节点电力系统潮流
- 遗传算法求解电力系统机组组合问题
评论
共有 条评论