• 大小: 6KB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2021-05-28
  • 语言: Matlab
  • 标签:

资源简介

频域外推EC的matlab代码,对应的文章是Spatial Error Concealment of Corrupted Image Data using Frequency Selective Extrapolation

资源截图

代码片段和文件信息

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                  %
%   Copyright (c) 2007 by                                          %
%   Chair of Multimedia Communications and Signal Processing       %
%   University of Erlangen-Nuremberg                               %
%   - all rights reserved -                                        %
%                                                                  %
%   This program is free of charge for scientific and personal     %
%   use. The author (Chair of Multimedia Communications and        %
%   Signal Processing University of Erlangen-Nuremberg) does      %
%   NOT give up his copyright. Any commercial use is prohibited    %
%                                                                  %
%   YOU ARE USING THIS PROGRAM AT YOUR OWN RISK! THE AUTHOR        %
%   IS NOT RESPONSIBLE FOR ANY DAMAGE OR DATA-LOSS CAUSED BY THE   %
%   USE OF THIS PROGRAM.                                           %
%                                                                  %
%                                                                  %
%   If you have any questions please contact:                      %
%                                                                  %
%   Dipl.-Ing. Juergen Seiler                                      %
%   Multimedia Communications and Signal Processing                %
%   University of Erlangen-Nuremberg                               %
%   Cauerstr. 7                                                    %
%   91058 Erlangen Germany                                        %
%                                                                  %
%   email: seiler @ lnt . de                                       %
%                                                                  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


close all;
clear all;


% Simulation parameters
src_img = double(imread(‘lena_y.tif‘));

border_width = 16;
dEa_threshold = 0;
Ea_threshold = 0;
fft_size = 64;
max_iter = 20;
rho = 0.8;

x_block_size = 16;
y_block_size = 16;

% Setup calculations
y_size = size(src_img1);
x_size = size(src_img2);

M = y_block_size+2*border_width;
N = x_block_size+2*border_width;

fft_x_offset = floor((fft_size-N)/2);
fft_y_offset = floor((fft_size-M)/2);

dE_a= zeros(fft_size);

% Show original image
figure(1)
imshow(src_img [0 255])
title(‘Original image‘)


% Generate erroneous image
y_loss_offset = 49:48:y_size-48;
x_loss_offset = 49:48:x_size-48;

loss_img = src_img;
for y_loss_counter = 1:length(y_loss_offset)
for x_loss_counter = 1:length(x_loss_offset)
loss_img(y_loss_offset(y_loss_counter)+(1:y_block_size)x_loss_offset(x_loss_counter)+(1:x_block_size)) = 0;
end
end


% Show erroneous image
figure(2)
imshow(loss_img [0 255])
title(‘Image with isolated block losses‘)


% Weighting function
w = zeros(fft_size);
w(fft_y_offset+(1:M) fft_x_offset+(1:N)) =

评论

共有 条评论

相关资源