资源简介
hungarian allocation algorithm for you
代码片段和文件信息
function [MatchingCost] = Hungarian(Perf)
%
% [MATCHINGCOST] = Hungarian_New(WEIGHTS)
%
% A function for finding a minimum edge weight matching given a MxN Edge
% weight matrix WEIGHTS using the Hungarian Algorithm.
%
% An edge weight of Inf indicates that the pair of vertices given by its
% position have no adjacent edge.
%
% MATCHING return a MxN matrix with ones in the place of the matchings and
% zeros elsewhere.
%
% COST returns the cost of the minimum matching
% Written by: Alex Melin 30 June 2006
% Initialize Variables
Matching = zeros(size(Perf));
% Condense the Performance Matrix by removing any unconnected vertices to
% increase the speed of the algorithm
% Find the number in each column that are connected
num_y = sum(~isinf(Perf)1);
% Find the number in each row that are connected
num_x = sum(~isinf(Perf)2);
% Find the columns(vertices) and rows(vertices) that are isolated
x_con = find(num_x~=0);
y_con = find(num_y~=0);
% Assemble Condensed Performance Matrix
P_size = max(length(x_con)length(y_con));
P_cond = zeros(P_size);
P_cond(1:length(x_con)1:length(y_con)) = Perf(x_cony_con);
if isempty(P_cond)
Cost = 0;
return
end
% Ensure that a perfect matching exists
% Calculate a form of the Edge Matrix
Edge = P_cond;
Edge(P_cond~=Inf) = 0;
% Find the deficiency(CNUM) in the Edge Matrix
cnum = min_line_cover(Edge);
% Project additional vertices and edges so that a perfect matching
% exists
Pmax = max(max(P_cond(P_cond~=Inf)));
P_size = length(P_cond)+cnum;
P_cond = ones(P_size)*Pmax;
P_cond(1:length(x_con)1:length(y_con)) = Perf(x_cony_con);
%*************************************************
% MAIN PROGRAM: CONTROLS WHICH STEP IS EXECUTED
%*************************************************
exit_flag = 1;
stepnum = 1;
while exit_flag
switch stepnum
case 1
[P_condstepnum] = step1(P_cond);
case 2
[r_covc_covMstepnum] = step2(P_cond);
case 3
[c_covstepnum] = step3(MP_size);
case 4
[Mr_covc_covZ_rZ_cstepnum] = step4(P_condr_covc_covM);
case 5
[Mr_covc_covstepnum] = step5(MZ_rZ_cr_covc_cov);
case 6
[P_condstepnum] = step6(P_condr_covc_cov);
case 7
exit_flag = 0;
end
end
% Remove all the virtual satellites and targets and uncondense the
% Matching to the size of the original performance matrix.
Matching(x_cony_con) = M(1:length(x_con)1:length(y_con));
Cost = sum(sum(Perf(Matching==1)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STEP 1: Find the smallest number of zeros in each row
% and subtract that minimum from its row
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [P_condstepnum] = step1(P_cond)
- 上一篇:matlab 如何生成exe
- 下一篇:InSAR相位降噪旋滤波程序
评论
共有 条评论