资源简介
http://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization
Description
Previously titled "Another Particle Swarm Toolbox"
Introduction
Particle swarm optimization (PSO) is a derivative-free global optimum solver. It is inspired by the surprisingly organized behaviour of large groups of simple animals, such as flocks of birds, schools of fish, or swarms of locusts. The individual creatures, or "particles", in this algorithm are primitive, knowing only four simple things: 1 & 2) their own current location in the search space and fitness value, 3) their previous personal best location, and 4) the overall best location found by all the particles in the "swarm". There are no gradients or Hessians to calculate. Each particle continually adjusts its speed and trajectory in the search space based on this information, moving closer towards the global optimum with each iteration. As seen in nature, this computational swarm displays a remarkable level of coherence and coordination despite the simplicity of its individual particles.
Ease of Use
If you are already using the Genetic Algorithm (GA) included with MATLAB's Global Optimization Toolbox, then this PSO toolbox will save you a great deal of time. It can be called from the MATLAB command line using the same syntax as the GA, with some additional options specific to PSO. This will allow a high degree of code re-usability between the PSO toolbox and the GA toolbox. Certain GA-specific parameters such as cross-over and mutation functions will obviously not be applicable to the PSO algorithm. However, many of the commonly used options for the Genetic Algorithm Toolbox may be used interchangeably with PSO since they are both iterative population-based solvers. See >> help pso (from the ./psopt directory) for more details.
Features
* NEW: support for distributed computing using MATLAB's parallel computing toolbox.
* Full support for bounded, linear, and nonlinear constraints.
*
代码片段和文件信息
function state = evolutioncomplete(optionsstateflag)
% Plays a notification when genetic algorithm finishes. Requires a
% Starcraft installation in its default directory typically:
% C:\Program Files\Starcraft
%
% Works with Windows not tested on other platforms.
if ispc && strcmp(flag‘done‘) && ~strcmp(options.Display‘off‘)
sounddir = [getenv(‘ProgramFiles‘) ‘\Starcraft\Sound\Zerg\Advisor‘] ;
if isdir(sounddir) && exist([sounddir ‘\ZAdUpd02.wav‘]‘file‘)
[y Fs nbits] = audioread([sounddir ‘\ZAdUpd02.wav‘]) ;
obj = audioplayer(y Fs nbits);
playblocking(obj)
end
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2016-02-25 06:07 sdnchen-psomatlab-a65870f\
文件 4913 2016-02-25 06:07 sdnchen-psomatlab-a65870f\README.md
文件 633 2016-02-25 06:07 sdnchen-psomatlab-a65870f\evolutioncomplete.m
文件 1107 2016-02-25 06:07 sdnchen-psomatlab-a65870f\license.txt
目录 0 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\
文件 182 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\heart.m
文件 718 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\initstate.m
文件 585 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\overlaycontour.m
文件 1993 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\overlaysurface.m
文件 4726 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psocheckbounds.m
文件 5123 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psocheckinitialpopulation.m
文件 730 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psocheckpopulationinitrange.m
文件 800 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psocreationbinary.m
文件 948 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psocreationuniform.m
文件 1811 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psogenerateoutputmessage.m
文件 805 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psogetinitialpopulation.m
文件 2756 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\psorunhybridfcn.m
文件 444 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\quadrifolium.m
文件 288 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\unitcircle.m
文件 286 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\unitdisk.m
文件 38 2016-02-25 06:07 sdnchen-psomatlab-a65870f\private\void.m
文件 26034 2016-02-25 06:07 sdnchen-psomatlab-a65870f\pso.m
文件 1461 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psobinary.m
文件 1814 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psoboundsabsorb.m
文件 2971 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psoboundspenalize.m
文件 540 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psoboundsreflect.m
文件 2454 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psoboundssoft.m
文件 723 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psocalculatepenalties.m
文件 2301 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psodemo.m
文件 2254 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psoiterate.m
文件 9936 2016-02-25 06:07 sdnchen-psomatlab-a65870f\psooptimset.m
............此处省略18个文件信息
- 上一篇:实现2DPSK功能的matlab程序
- 下一篇:hmm算法matlab实现和
相关资源
- 粒子群优化算法解决背包问题
- 粒子群模拟退火算法
- matlab粒子群算法PSO程序,算法优化效
- 粒子群算法求函数最优值matlab
- 标准粒子群优化算法-用Griewank函数测
- 基本粒子群算法的ieee30节点无功优化
- Matlab写的粒子群优化算法,很好用!
- 粒子群算法源代码
- 基于粒子群PSO算法系统辨识matlab程序
- 优化算法——粒子群算法(PSO)原理
- matlab粒子群算法辨识传递函数模型包
- 基于matlab粒子群算法解决旅行商(T
- 粒子群算法求解BP神经网络参数
- 智能微电网粒子群优化算法.7z
- 关于电力负荷的SVM预测,设计了MATL
- 遗传算法和粒子群算法结合的matlab源
- 粒子群算法PSOmatlab工具箱toolbox
- matlab实现的粒子群动态寻路算法
- 粒子群优化算法源码matlab
- 基于粒子群优化的极限学习机
- 粒子群算法解决VRP代码matlab
- 光伏发电中粒子群优化的最大功率点
- MOPSO多目标粒子群优化算法MATLAB实现可
- 线性递减权重粒子群算法MATLAB代码
- matlab粒子群工具箱
- 粒子群算法算法 包含多种适用度函数
- 基于matlab的粒子群算法PSO工具箱
- MATLAB——基于粒子群算法的PID控制器
- 通过粒子群来优化PID参数
- 粒子群优化的极限学习机matlab源代码
评论
共有 条评论