资源简介
LDA( Linear Discriminant Analysis),很不错
代码片段和文件信息
function [eigvector eigvalue elapse] = LDA(gndoptionsdata)
% LDA: Linear Discriminant Analysis
%
% [eigvector eigvalue] = LDA(gnd options data)
%
% Input:
% data - Data matrix. Each row vector of fea is a data point.
% gnd - Colunm vector of the label information for each
% data point.
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% Regu - 1: regularized solution
% a* = argmax (a‘X‘WXa)/(a‘X‘Xa+ReguAlpha*I)
% 0: solve the sinularity problem by SVD
% Default: 0
%
% ReguAlpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - ‘Ridge‘: Tikhonov regularization
% ‘Custom‘: User provided
% regularization matrix
% Default: ‘Ridge‘
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is ‘Custom‘. nFea is
% the feature number of data
% matrix
% Fisherface - 1: Fisherface approach
% PCARatio = nSmp - nClass
% Default: 0
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100% all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1 the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
%
% Output:
% eigvector - Each column is an embedding function for a new
% data point (row vector) x y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of LDA eigen-problem.
% elapse - Time spent on different steps
%
% Exampl
- 上一篇:通信系统的matlab仿真
- 下一篇:LPP,matlab实现
评论
共有 条评论