资源简介
保持邻域嵌入算法也就是NPE算法的MATLAB代码
代码片段和文件信息
function [eigvector eigvalue elapse] = NPE(options data)
% NPE: Neighborhood Preserving embedding
%
% [eigvector eigvalue elapse] = NPE(options data)
%
% Input:
% data - Data matrix. Each row vector of data is a data point.
%
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% NeighborMode - Indicates how to construct the graph. Choices
% are:
% ‘KNN‘ - Put an edge between two nodes if and
% only if they are among the k nearst
% neighbors of each other. Default
% option.
% ‘Supervised‘ - Two variations:
% 1. k=0 Put an edge between two nodes
% if and only if they belong to
% same class.
% 2. k>0 The distance between two nodes
% in the same class will be smaller than
% two nodes have diff. labels
% The label information ‘gnd‘ should be
% provided.
%
% k - The number of neighbors.
% Default k = 5;
% gnd - The parameter needed under ‘Supervised‘
% NeighborMode. Colunm vector of the label
% information for each data point.
%
% Please see LGE.m for other options.
%
%
% Output:
% eigvector - Each column is an embedding function for a new
% data point (row vector) x y = x*eigvector
% will be the embedding result of x.
% eigvalue - The eigvalue of LPP eigen-problem. sorted from
% smallest to largest.
% elapse - Time spent on different steps
%
%
% Examples:
%
%
%
% fea = rand(5070);
% gnd = [ones(101);ones(151)*2;ones(101)*3;ones(151)*4];
% options = [];
% options.k = 5;
% options.NeighborMode = ‘Supervised‘;
% options.gnd = gnd;
% [eigvector eigvalue] = NPE(options fea);
% Y = fea*eigvector;
%
%
%
% See also LPP LGE
%
%Reference:
%
% Xiaofei He Deng Cai Shuicheng Yan and Hong-Jiang
% Zhang “Neighborhood Preserving embedding“ Tenth IEEE International
% Conference on Computer Vision (ICCV‘2005) 2005
%
% Sam Roweis & Lawrence Saul. “Nonlinear dimensionality reduction by
- 上一篇:深圳市人口预测
- 下一篇:MATLAB音乐合成
评论
共有 条评论