资源简介
该代码可用于进行最小二乘支持向量机的训练数据,分类,有demo数据,可直接运行
代码片段和文件信息
function [sig_e baymodel] = bay_errorbar(modelXt type nb bay)
% Compute the error bars for a one dimensional regression problem
%
% >> sig_e = bay_errorbar({XY‘function‘gamsig2} Xt)
% >> sig_e = bay_errorbar(model Xt)
%
% The computation takes into account the estimated noise variance
% and the uncertainty of the model parameters estimated by
% Bayesian inference. sig_e is the estimated standard deviation of
% the error bars of the points Xt. A plot is obtained by replacing
% Xt by the string ‘figure‘.
%
%
% Full syntax
%
% 1. Using the functional interface:
%
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} Xt)
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} Xt type)
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} Xt type nb)
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} ‘figure‘)
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} ‘figure‘ type)
% >> sig_e = bay_errorbar({XY‘function‘gamsig2kernelpreprocess} ‘figure‘ type nb)
%
% Outputs
% sig_e : Nt x 1 vector with the [$ \sigma^2$] errorbands of the test data
% Inputs
% X : N x d matrix with the inputs of the training data
% Y : N x 1 vector with the inputs of the training data
% type : ‘function estimation‘ (‘f‘)
% gam : Regularization parameter
% sig2 : Kernel parameter
% kernel(*) : Kernel type (by default ‘RBF_kernel‘)
% preprocess(*) : ‘preprocess‘(*) or ‘original‘
% Xt : Nt x d matrix with the inputs of the test data
% type(*) : ‘svd‘(*) ‘eig‘ ‘eigs‘ or ‘eign‘
% nb(*) : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation
%
% 2. Using the object oriented interface:
%
% >> [sig_e bay model] = bay_errorbar(model Xt)
% >> [sig_e bay model] = bay_errorbar(model Xt type)
% >> [sig_e bay model] = bay_errorbar(model Xt type nb)
% >> [sig_e bay model] = bay_errorbar(model ‘figure‘)
% >> [sig_e bay model] = bay_errorbar(model ‘figure‘ type)
% >> [sig_e bay model] = bay_errorbar(model ‘figure‘ type nb)
%
% Outputs
% sig_e : Nt x 1 vector with the [$ \sigma^2$] errorbands of the test data
% model(*) : object oriented representation of the LS-SVM model
% bay(*) : object oriented representation of the results of the Bayesian inference
% Inputs
% model : object oriented representation of the LS-SVM model
% Xt : Nt x d matrix with the inputs of the test data
% type(*) : ‘svd‘(*) ‘eig‘ ‘eigs‘ or ‘eign‘
% nb(*) : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation
%
% See also:
% bay_lssvm bay_optimize bay_modoutClass plotlssvm
% Copyright (c) 2002
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2738 2003-02-21 22:39 LS-SVMlab1.5Advanced\AFE.M
文件 5785 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_errorbar.m
文件 2003 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_initlssvm.m
文件 10345 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_lssvm.m
文件 8187 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_lssvmARD.m
文件 9358 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_modoutClass.m
文件 5977 2003-02-21 22:39 LS-SVMlab1.5Advanced\bay_optimize.m
文件 4178 2003-02-21 22:39 LS-SVMlab1.5Advanced\BAY_RR.M
文件 5632 2003-02-21 22:39 LS-SVMlab1.5Advanced\changelssvm.m
文件 4245 2003-02-21 22:39 LS-SVMlab1.5Advanced\CODE.M
文件 2118 2003-02-21 22:39 LS-SVMlab1.5Advanced\codedist_bay.m
文件 756 2003-02-21 22:39 LS-SVMlab1.5Advanced\codedist_hamming.m
文件 2018 2003-02-21 22:39 LS-SVMlab1.5Advanced\codedist_loss.m
文件 4125 2003-02-21 22:39 LS-SVMlab1.5Advanced\codelssvm.m
文件 5197 2003-02-21 22:39 LS-SVMlab1.5Advanced\code_ECOC.m
文件 550 2003-02-21 22:39 LS-SVMlab1.5Advanced\code_MOC.m
文件 364 2003-02-21 22:39 LS-SVMlab1.5Advanced\code_OneVsAll.m
文件 555 2003-02-21 22:39 LS-SVMlab1.5Advanced\code_OneVsOne.m
文件 8174 2003-02-21 22:39 LS-SVMlab1.5Advanced\crossvalidate.m
文件 1886 2003-02-21 22:39 LS-SVMlab1.5Advanced\deltablssvm.m
文件 3369 2003-02-21 22:39 LS-SVMlab1.5Advanced\democlass.m
文件 3864 2003-02-21 22:39 LS-SVMlab1.5Advanced\DEMOFUN.M
文件 4747 2003-02-21 22:39 LS-SVMlab1.5Advanced\demomodel.m
文件 2239 2003-02-21 22:39 LS-SVMlab1.5Advanced\demo_fixedclass.m
文件 3099 2003-02-21 22:39 LS-SVMlab1.5Advanced\demo_fixedsize.m
文件 3337 2003-02-21 22:39 LS-SVMlab1.5Advanced\demo_yinyang.m
文件 3507 2003-02-21 22:39 LS-SVMlab1.5Advanced\denoise_kpca.m
文件 3414 2003-02-21 22:39 LS-SVMlab1.5Advanced\EIGN.M
文件 6927 2003-02-21 22:39 LS-SVMlab1.5Advanced\gridsearch.m
文件 4042 2003-02-21 22:39 LS-SVMlab1.5Advanced\initlssvm.m
............此处省略55个文件信息
评论
共有 条评论