资源简介
粒子群算法 约束 多目标 优化 matlab代码
代码片段和文件信息
% ----------------------------------------------------------------------- %
% Function MOPSO performs a Multi-objective Particle Swarm Optimization %
% over continous functions. %
% %
% Input parameters: %
% - params: Struct that contains the customized parameters. %
% * params.Np: Number of particles. %
% * params.Nr: Repository size (in particles). %
% * params.maxgen: Maximum number of generations. %
% * params.W: Inertia coefficient. %
% * params.C1: Personal confidence factor. %
% * params.C2: Swarm confidence factor. %
% * params.ngrid: Number of hypercubes in each dimension. %
% * params.maxvel: Maximum velocity (search space percentage)%
% * params.u_mut: Uniform mutation percentage. %
% - MultiObj: Struct that contains the parameters relative to the %
% optimization functions. %
% * MultiObj.fun: Anonymous multi-obj function to minimize. %
% * MultiObj.nVar: Number of variables. %
% * MultiObj.var_min: Vector that indicates the minimum values %
% of the search space in each dimension. %
% * MultiObj.var_max: Same than ‘var_min‘ with the maxima. %
% ----------------------------------------------------------------------- %
% For an example of use run ‘example.m‘. %
% ----------------------------------------------------------------------- %
% Author: Victor Martinez Cagigal %
% Date: 17/03/2017 %
% E-mail: vicmarcag (at) gmail (dot) com %
% Version: 1.1 %
% Log: %
% - 1.0: Initial version without mutation [1] (15/03/2017). %
% - 1.1: Crowding and mutation are implemented [2]. %
% ----------------------------------------------------------------------- %
% References: %
% [1]Coello C. A. C. Pulido G. T. & Lechuga M. S. (2004). Handling%
% multiple objectives with particle swarm optimization. IEEE Tran- %
% sactions on evolutionary computation 8(3) 256-279. %
% %
% [2]Sierra M. R. & Coello C. A. C. (2005 March). Improving PSO- %
% based multi-objective optimiz
- 上一篇:粒子群算法matlab含注释
- 下一篇:异步电机开环恒压频比控制
评论
共有 条评论