• 大小: 2.77MB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2023-08-10
  • 语言: Matlab
  • 标签:

资源简介

most of the researches on PV power generation forecasting methods have problems such as long time for model training and propose an optimization. Using the BP(backpropagation) neural network, this learning algorithm is mainly applicable to multi-input, multi-output networks. It can rely on ready-made data and input and output without knowing the mathematical relationship between the mapping relationship in which input and output. The mapping relationship is learned and stored. In addition, BP neural networks have great advantages in dealing with non-linear problems and have strong generalization ability.

资源截图

代码片段和文件信息


clear 
clc
warning off 
nntwarn off

global p     % Training input of data
global t     % Training output of data
global R     % The number of input node
global S2    % The number of output node
global S1    % The number of hidden layers node
global S     % Encoding length
S1=7;


day=[
24.28050041 79.18664551 118.7556229 0.498066664
24.27223969 79.11182404 107.4616165 0.453699917
24.32404137 79.12751007 113.1695709 0.483233273
24.28742981 79.02813721 119.4852142 0.522066772
24.29614639 78.63471985 124.2647552 0.548966765
24.44758797 77.61372375 123.2032242 0.555933356
24.5573349 75.72170258 133.1891327 0.597466707
24.71410561 75.81557465 151.4627838 0.67566663
24.79006767 73.11479187 169.4704132 0.749633372
24.90089226 72.61096191 176.5809174 0.782366931
25.03055954 71.96666718 161.6261444 0.697733402
25.05233383 70.77360535 134.8908539 0.600666761
25.07719231 71.31375122 136.8597565 0.641833305
25.19164848 70.52310944 149.4885712 0.729600012
25.29346275 69.68406677 160.9412384 0.81126672
25.44688034 68.67297363 168.1025848 0.882033348
25.60445404 65.91831207 185.1776276 0.970600069
25.74345016 64.28778076 212.1323547 1.094433427
25.86354637 63.09873199 226.2109528 1.161266565
26.0164547 63.28351974 237.5073547 1.208199978
26.09581757 60.10884094 239.8231812 1.193166733
26.22686195 58.52819061 250.0517273 1.229533315
26.39403152 56.94085312 257.771759 1.269633651
26.42829514 55.34542465 250.2635498 1.233933449
26.49137497 54.0851593 234.5327148 1.120566726
26.54426193 54.70727921 223.725235 1.053766608
26.50731087 53.55802155 215.5336304 1.01933372
26.42572403 52.25370789 212.4824524 0.556166649
26.43495941 52.74851227 210.2404633 1.031600118
26.44470978 53.16724396 228.1355286 1.151333332
26.57367516 54.28215408 266.3484192 1.397633553
26.65934563 52.6730957 328.9782715 1.674700022
26.80798531 51.54441071 377.1354675 1.886999965
26.97813797 50.69446945 411.3053589 2.02246666
27.07191086 51.11526489 394.967041 1.902066946
27.11913872 51.00314713 378.4665222 1.81556654
27.0648098 49.77826691 329.460144 1.595699906
26.8507061 50.18064499 280.3239441 1.349666595
26.78201103 50.40595245 230.4190521 1.123233438
26.7053833 50.91542816 195.2900696 0.946866691
26.47287369 50.59962845 184.5733795 0.901999712
26.42066765 51.92476273 182.5689392 0.942266643
26.31132507 51.17784882 186.7106934 1.005866766
26.26443672 51.77466965 191.8409729 1.056366682
26.33745766 51.60219193 206.1300964 1.162166715
26.35835075 51.94431686 217.2509308 1.210532904
26.32790756 51.76330566 219.2840881 1.198300123
26.3177166 51.44794083 215.0214691 1.153099895
26.38223457 51.89785767 218.2433319 1.181799889
26.37432671 51.58493805 240.7233124 1.29396677
26.38178635 51.38508987 245.8151703 1.339000106
26.39197159 50.84028625 222.4656067 1.207066774
26.45825195 51.78571701 202.6178894 1.097766876
26.44766617 51.99055862 203.1655121 1.11193347
26.43800354 51.35631943 216.8106995 1.173566461
26.52618027 51.7565

评论

共有 条评论

相关资源