资源简介
fprintf('iris data set:\n');
fprintf(' Euclidean training error: %2.2f\n',knnerrI(1)*100);
fprintf(' Euclidean testing error: %2.2f\n',knnerrI(2)*100);
fprintf(' Malhalanobis training error: %2.2f\n',knnerrL(1)*100);
fprintf(' Malhalanobis testing error: %2.2f\n',knnerrL(2)*100);
fprintf('Training
代码片段和文件信息
Mdata = load(‘D:\matlab\work\irirs\code\irisdata.txt‘);
p = 0.2;
K = 10
alldata = Mdata(:1:4);
alllabel = Mdata(:5);
row = size(alldata1);
r = randperm(row);
trainIndex = r(1:round(row * p));
testIndex = r(round(row * p) + 1 : end);
yTr = alllabel(trainIndex:)‘;
yTe = alllabel(testIndex:)‘;
xTr = alldata(trainIndex:)‘;
xTe = alldata(testIndex:)‘;
[LDet] = lmnn(xTryTr‘quiet‘1)
- 上一篇:奈曼皮尔逊准则matlab仿真
- 下一篇:稀疏自编码器的参数初始化
评论
共有 条评论