• 大小: 10.92MB
    文件类型: .zip
    金币: 1
    下载: 0 次
    发布日期: 2023-10-07
  • 语言: Matlab
  • 标签: label  

资源简介

自制数据集时标签的制作代码,matlab版本,亲测有效,欢迎大家下载

资源截图

代码片段和文件信息

from __future__ import print_function

import distutils.spawn
import os.path
from setuptools import find_packages
from setuptools import setup
import shlex
import subprocess
import sys


PY3 = sys.version_info[0] == 3
PY2 = sys.version_info[0] == 2
assert PY3 or PY2


here = os.path.abspath(os.path.dirname(__file__))
version_file = os.path.join(here ‘labelme‘ ‘_version.py‘)
if PY3:
    import importlib
    version = importlib.machinery.SourceFileLoader(
        ‘_version‘ version_file
    ).load_module().__version__
else:
    assert PY2
    import imp
    version = imp.load_source(‘_version‘ version_file).__version__
del here


install_requires = [
    ‘matplotlib‘
    ‘numpy‘
    ‘Pillow>=2.8.0‘
    ‘PyYAML‘
    ‘qtpy‘
    ‘termcolor‘
]

# Find python binding for qt with priority:
# PyQt5 -> PySide2 -> PyQt4
# and PyQt5 is automatically installed on Python3.
QT_BINDING = None

try:
    import PyQt5  # NOQA
    QT_BINDING = ‘pyqt5‘
except ImportError:
    pass

if QT_BINDING is None:
    try:
        import PySide2  # NOQA
        QT_BINDING = ‘pyside2‘
    except ImportError:
        pass

if QT_BINDING is None:
    try:
        import PyQt4  # NOQA
        QT_BINDING = ‘pyqt4‘
    except ImportError:
        if PY2:
            print(
                ‘Please install PyQt5 PySide2 or PyQt4 for Python2.\n‘
                ‘Note that PyQt5 can be installed via pip for Python3.‘
                file=sys.stderr
            )
            sys.exit(1)
        assert PY3
        # PyQt5 can be installed via pip for Python3
        install_requires.append(‘PyQt5‘)
        QT_BINDING = ‘pyqt5‘
del QT_BINDING


if sys.argv[1] == ‘release‘:
    if not distutils.spawn.find_executable(‘twine‘):
        print(
            ‘Please install twine:\n\n\tpip install twine\n‘
            file=sys.stderr
        )
        sys.exit(1)

    commands = [
        ‘git tag v{:s}‘.format(version)
        ‘git push origin master --tag‘
        ‘python setup.py sdist‘
        ‘twine upload dist/labelme-{:s}.tar.gz‘.format(version)
    ]
    for cmd in commands:
        subprocess.check_call(shlex.split(cmd))
    sys.exit(0)


def get_long_description():
    with open(‘README.md‘) as f:
        long_description = f.read()

    try:
        import github2pypi
    except ImportError:
        return long_description

    return github2pypi.replace_url(
        slug=‘wkentaro/labelme‘ content=long_description
    )


setup(
    name=‘labelme‘
    version=version
    packages=find_packages()
    description=‘Image Polygonal Annotation with Python‘
    long_description=get_long_description()
    long_description_content_type=‘text/markdown‘
    author=‘Kentaro Wada‘
    author_email=‘www.kentaro.wada@gmail.com‘
    url=‘https://github.com/wkentaro/labelme‘
    install_requires=install_requires
    license=‘GPLv3‘
    keywords=‘Image Annotation Machine Learning‘
    classifiers=[
        ‘Development Status :: 5 - Production/Stable‘
        ‘Intend

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     目录           0  2019-03-23 00:02  labelme-master\
     文件          76  2019-03-23 00:02  labelme-master\.gitignore
     文件          97  2019-03-23 00:02  labelme-master\.gitmodules
     文件        5017  2019-03-23 00:02  labelme-master\.travis.yml
     文件         692  2019-03-23 00:02  labelme-master\LICENSE
     文件          18  2019-03-23 00:02  labelme-master\MANIFEST.in
     文件        8864  2019-03-23 00:02  labelme-master\README.md
     目录           0  2019-03-23 00:02  labelme-master\docker\
     文件         828  2019-03-23 00:02  labelme-master\docker\Dockerfile
     目录           0  2019-03-23 00:02  labelme-master\examples\
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\.readme\
     文件     1104053  2019-03-23 00:02  labelme-master\examples\bbox_detection\.readme\annotation.jpg
     文件         634  2019-03-23 00:02  labelme-master\examples\bbox_detection\README.md
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\
     文件      147408  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000003.jpg
     文件         691  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000003.json
     文件      108615  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000006.jpg
     文件        1186  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000006.json
     文件      136977  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000025.jpg
     文件         926  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_annotated\2011_000025.json
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\Annotations\
     文件         645  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\Annotations\2011_000003.xml
     文件        1068  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\Annotations\2011_000006.xml
     文件         844  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\Annotations\2011_000025.xml
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\AnnotationsVisualization\
     文件       47216  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\AnnotationsVisualization\2011_000003.jpg
     文件       31308  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\AnnotationsVisualization\2011_000006.jpg
     文件       46929  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\AnnotationsVisualization\2011_000025.jpg
     目录           0  2019-03-23 00:02  labelme-master\examples\bbox_detection\data_dataset_voc\JPEGImages\
............此处省略256个文件信息

评论

共有 条评论