资源简介

程序为eemd算法程序,只需将其导入matlab工具箱就可以直接输入数据进行分解

资源截图

代码片段和文件信息

function [allmode] = eemd(Y NoiseLevel NE numImf varargin)
% fast EMD/EEMD/CEEMD code:
%  Copyright (C) RCADA National Central University; 2013
%  ***** For Educational and Academic Purposes Only ********* 
%  Author : Yung-Hung Wang RCADA NCU
%
% Please Cite: 
% Y. H. Wang C. H. Yeh H. W. V. Young K. Hu and M. T. Lo
% “On the computational complexity of the empirical mode decomposition
% algorithm“
% Physica A: Statistical Mechanics and its Applications vol. 400Issue 15 pp. 159-167 2014
%
% Usage: 
% (A) [allmode]=eemd(Y NoiseLevel NE numImf)
% (B) [allmode]=eemd(xNoiseLevelNEnumImfrunCEEMDmaxSifttypeSplinetoModifyBCrandTypeseedNocheckInput);
%---------------------------------------------------------------
% INPUTS : 
%        Y: input signal
%        NoiseLevel: noise level
%        NE: ensemble number; if NE=1 and NoiseLevel = 0 then run EMD [2]
%        numImf: number of prescribed imf; if it is less than zeroit will be log2(n) n=data length 

%-------------Additional Input Properties-----------------------------------------
% runCEEMD: default=0; 0: run EEMD [3]; 1: CEEMD [4] add anti-phase noise so input signal is reconstructed; 
% maxSift:default = 10; sifting iteration number; 
% typeSpline: default=2; 1: clamped spline; 2: not a knot spline; 3: natural cubic spline;
% toModifyBC: default=1; 0: None ; 1: modified linear extrapolation; 2: Mirror Boundary
% randType: fefault=2; 1: uniformly distributed random noise; 2: gaussian white noise
% seedNo: default=1; random seed number in generating white noise; The seed number must be an integer between 0 and 2^32 - 1
% checkSignal: default=1;  0=> dont check  the input signal;  1: check there is any  NaN or Infinity in input;
%
% OUTPUTS :
%  allmode[m][t]: returned imfs; m=imf index t=time index
%
% References
%    [1] Y. H. Wang C. H. Yeh H. W. V. Young K. Hu and M. T. Lo 
%        “On the computational complexity of the empirical mode decomposition algorithm“
%        Physica A: Statistical Mechanics and its Applications vol. 400 Issue 15 pp. 159-167 2014
%    [2] N. E. Huang Z. Shen S. R. Long M. L. Wu H. H. Shih Q. Zheng N. C. Yen C. C. Tung and H. H. Liu 
%        “The Empirical Mode Decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis“
%        Proc. Roy. Soc. London A Vol. 454 pp. 903995 1998.
%    [3] Z. Wu and N. E. Huang “Ensemble Empirical Mode Decomposition: A
%        Noise-Assisted Data Analysis Method“ Advances in Adaptive Data Analysis vol. 1 pp. 1-41 2009.
%    [4] J. R. Yeh J. S. Shieh and N. E. Huang “Complementary ensemble empirical
%        mode decomposition: A novel noise enhanced data analysis method“ 
%        Advances in Adaptive Data Analysis vol. 2 Issue 2 pp. 135156 2010.
%
%


fprintf(‘Copyright (C) RCADA NCU Taiwan.\n‘);

allmode = [];
%verifyCode = 20041017; % For verification of emd

[YNoiseLevelNE

评论

共有 条评论