• 大小: 6KB
    文件类型: .m
    金币: 2
    下载: 0 次
    发布日期: 2024-02-01
  • 语言: Matlab
  • 标签:

资源简介

自动寻峰谷算法matlab实现,非常不错,大师实现

资源截图

代码片段和文件信息

function V=findvalleys(xySlopeThresholdAmpThresholdsmoothwidthpeakgroupsmoothtype)
% function P=findvalleys(xySlopeThresholdAmpThresholdsmoothwidthpeakgroupsmoothtype)
% Function to locate the valleys (mimnima) in a noisy x-y time series data
% set.  Detects valleys by looking for upward zero-crossings
% in the first derivative that exceed SlopeThreshold.
% Returns list (V) containing valley number and position 
% depth and width of each valley. Arguments “slopeThreshold“
% “ampThreshold“ and “smoothwidth“ control sensitivity.
% Higher values will neglect smaller features. “Smoothwidth“ is
% the width of the smooth applied before valley detection; larger
% values ignore narrow features. “Peakgroup“ is the number points 
% around the bottom part of the valley that are fit to a parabola to
% determine the valley vertex (x and y at lowest point) and width.
% The argument “smoothtype“ determines the smooth algorithm:
%   If smoothtype=1 rectangular (sliding-average or boxcar) 
%   If smoothtype=2 triangular (2 passes of sliding-average)
%   If smoothtype=3 pseudo-Gaussian (3 passes of sliding-average)
% See http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html and 
% http://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
% T. C. O‘Haver Version 3.1 June 2013
if nargin~=7;smoothtype=1;end  % smoothtype=1 if not specified in argument
if smoothtype>3;smoothtype=3;end
if smoothtype<1;smoothtype=1;end 
smoothwidth=round(smoothwidth);
peakgroup=round(peakgroup);
d=fastsmooth(deriv(y)smoothwidthsmoothtype);
n=round(peakgroup/2+1);
V=[0 0 0 0 0];
vectorlength=length(y);
peak=1;
AmpTest=AmpThreshold;
for j=smoothwidth:length(y)-smoothwidth
    if sign(d(j)) < sign (d(j+1)) % Detects zero-crossing
        if d(j+1)-d(j) > SlopeThreshold*y(j) % if slope of derivative is larger than SlopeThreshold
            if y(j) > AmpTest  % if height of valley is larger than AmpThreshold
                xx=zeros(size(peakgroup));yy=zeros(size(peakgroup));
                for k=1:peakgroup % Create sub-group of points near valley
                    groupindex=j+k-n+1;
                    if groupindex<1 groupindex=1;end
                    if groupindex>vectorlength groupindex=vectorlength;end
                    xx(k)=x(groupindex);yy(k)=y(groupindex);
                end
                [coefSMU]=polyfit(xxyy2);  % Fit parabola to sub-group with centering and scaling
                c1=coef(3);c2=coef(2);c3=coef(1);
                valleyX=-((MU(2).*c2/(2*c3))-MU(1));    % Compute valley position and height of fitted parabola
                valleyY=(c1-(c2*c2/(4*c3)));
                MeasuredWidth=norm(MU(2).*2.35482/(sqrt(2)*sqrt(-1*c3)));
                % if the valley is too narrow for least-squares technique to work
                % well just use the min value of y in the sub-group of points near valley.
                if peakgroup<5
                    valley

评论

共有 条评论

相关资源