资源简介
对“data3.m”数据,用其中一半的数据采用非线性SVM算法设计分类器并画出决策面,另一半数据用于测试分类器性能。比较不同核函数的结果。(注意讨论算法中参数设置的影响。)
来自课程设计,附上matlab源代码,可以成功调试出来。
代码片段和文件信息
clear all;
close all;
x1(11)=1.8796; x1(12)=1.8041;
x1(21)=2.6801; x1(22)=2.7526;
x1(31)=3.6284; x1(32)=1.3313;
x1(41)=4.7302; x1(42)=3.0267;
x1(51)=5.7865; x1(52)=0.3089;
x1(61)=7.1831; x1(62)=2.9453;
x1(71)=7.2395; x1(72)=3.6268;
x1(81)=8.0763; x1(82)=4.9714;
x1(91)=9.9172; x1(92)=3.9551;
x1(101)=11.7397; x1(102)=3.9500;
x1(111)=12.8685; x1(112)=2.4619;
x1(121)=12.5289; x1(122)=3.5313;
x1(131)=13.3206; x1(132)=4.4376;
x1(141)=15.7457; x1(142)=0.9094;
x1(151)=15.4758; x1(152)=5.2898;
x1(161)=17.2917; x1(162)=5.2197;
x1(171)=18.9338; x1(172)=3.7324;
x1(181)=19.3299; x1(182)=2.0778;
x1(191)=20.7408; x1(192)=5.2698;
x1(201)=20.0199; x1(202)=3.5670;
x1(211)=21.2740; x1(212)=4.7658;
x1(221)=23.6375; x1(222)=3.3211;
x1(231)=23.8603; x1(232)=6.1293;
x1(241)=25.7806; x1(242)=1.8003;
x1(251)=26.4698; x1(252)=4.3295;
x1(261)=27.3746; x1(262)=3.1499;
x1(271)=27.6922; x1(272)=6.1123;
x1(281)=28.3321; x1(282)=3.6388;
x1(291)=29.3112; x1(292)=5.5035;
x1(301)=30.3822; x1(302)=2.5172;
x1(311)=31.8449; x1(312)=4.1858;
x1(321)=33.7120; x1(322)=5.0515;
x1(331)=33.9805; x1(332)=4.8947;
x1(341)=35.6319; x1(342)=5.7023;
x1(351)=35.9215; x1(352)=6.1456;
x1(361)=36.9147; x1(362)=3.8067;
x1(371)=37.9014; x1(372)=7.9138;
x1(381)=38.8244; x1(382)=7.3828;
x1(391)=40.8032; x1(392)=7.7581;
x1(401)=40.0112; x1(402)=8.0748;
x1(411)=41.5948; x1(412)=7.5525;
x1(421)=42.0983; x1(422)=5.4144;
x1(431)=44.3864; x1(432)=5.9879;
x1(441)=45.3002; x1(442)=7.9712;
x1(451)=46.9660; x1(452)=7.7468;
x1(461)=47.1053; x1(462)=5.5875;
x1(471)=47.8001; x1(472)=5.9673;
x1(481)=48.3976; x1(482)=7.1165;
x1(491)=50.2504; x1(492)=8.0479;
x1(501)=51.4667; x1(502)=8.6202;
x1(511)=49.7518; x1(512)=11.0474;
x1(521)=48.0198; x1(522)=9.7412;
x1(531)=47.8397; x1(532)=8.6673;
x1(541)=47.5073; x1(542)=9.6810;
x1(551)=46.5877; x1(552)=10.5484;
x1(561)=45.8399; x1(562)=8.6472;
x1(571)=44.6894; x1(572)=12.2699;
x1(581)=42.7355; x1(582)=13.1906;
x1(591)=42.2416; x1(592)=11.6802;
x1(601)=41.4626; x1(602)=9.1437;
x1(611)=39.3878; x1(612)=13.3631;
x1(621)=39.8096; x1(622)=12.6606;
x1(631)=38.1384; x1(632)=13.4300;
x1(641)=37.2636; x1(642)=10.7010;
x1(651)=35.4688; x1(652)=12.6869;
x1(661)=35.0976; x1(662)=12.7679;
x1(671)=34.8632; x1(672)=12.0533;
x1(681)=32.6704; x1(682)=15.7258;
x1(691)=32.3111; x1(692)=16.0957;
x1(701)=30.7838; x1(702)=14.5081;
x1(711)=30.2546; x1(712)=17.3737;
x1(721)=29.3982; x1(722)=13.6487;
x1(731)=27.7944; x1(732)=17.5663;
x1(741)=26.8273; x1(742)=17.3489;
x1(751)=26.3104; x1(752)=15.9892;
x1(761)=25.6752; x1(762)=17.1196;
x1(771)=23.7432; x1(772)=19.0045;
x1(781)=22.8505; x1(782)=17.6571;
x1(791)=22.1893; x1(792)=15.8862;
x1(801)=21.1315; x1(802)=16.5870;
x1(811)=20.4331; x1(812)=15.9183;
x1(821)=19.0226; x1(822)=17.5691;
x1(831)=18.5528; x1(8
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 80856 2011-03-28 15:03 非线性SVM\data3.emf
文件 7815 2011-03-28 15:03 非线性SVM\data3.m
文件 1510 2007-07-02 13:49 非线性SVM\kernel.m
文件 8781 2011-04-21 20:39 非线性SVM\Main_SVC.m
文件 3423 2007-07-02 13:50 非线性SVM\svmSim.m
文件 4052 2007-07-01 20:48 非线性SVM\svmTrain.m
文件 329728 2011-05-13 09:31 非线性SVM\非线性SVM分类器设计.doc
目录 0 2011-05-13 09:33 非线性SVM
----------- --------- ---------- ----- ----
436165 8
- 上一篇:《MATLAB 智能算法超级学习手册》-程序代码-风之子QL
- 下一篇:没有了
评论
共有 条评论