资源简介
各种决策树分类的代码,包括ID3、c4.5等等,有界面可以运行
代码片段和文件信息
classdef classregtree
%CLASSREGTREE Create a classification and regression tree object.
% T = CLASSREGTREE(XY) creates a decision tree T for predicting response
% Y as a function of predictors X. X is an N-by-M matrix of predictor
% values. If Y is a vector of N response values then CLASSREGTREE
% performs regression. If Y is a categorical variable character array
% or cell array of strings CLASSREGTREE performs classification. Either
% way T is a binary tree where each non-terminal node is split based on
% the values of a column of X. NaN values in X are taken to be missing
% values. NaN values empty strings or undefined categorical levels in Y
% are taken to be missing. Observations with all missing values for X or
% missing values for Y are not used in the fit. Observations with some
% missing values for X are used to find splits on variables for which
% these observations have valid values.
%
% T = CLASSREGTREE(XY‘PARAM1‘val1‘PARAM2‘val2...) specifies optional
% parameter name/value pairs:
%
% For all trees:
% ‘categorical‘ Vector of indices of the columns of X that are to be
% treated as unordered categorical variables.
% ‘method‘ Either ‘regression‘ (default if Y is numeric) or
% ‘classification‘ (default if Y is not numeric).
% ‘names‘ A cell array of names for the predictor variables
% in the order in which they appear in the X matrix
% from which the tree was created.
% ‘prune‘ ‘on‘ (default) to compute the full tree and the optimal
% sequence of pruned subtrees or ‘off‘ for the full tree
% without pruning.
% ‘minparent‘ A number K such that impure nodes must have K or more
% observations to be split (default 10).
% ‘minleaf‘ A minimal number of observations per tree leaf
% (default=1). If both ‘minparent‘ and ‘minleaf‘ are
% supplied the setting which results in larger leaves is
% used: MINPARENT = MAX(MINPARENT2*MINLEAF).
% ‘nvartosample‘ Number of predictor variables randomly selected
% for each split. By default all variables are
% considered for each decision split.
% ‘mergeleaves‘ ‘on‘ (default) to merge leaves that originate from the
% same parent node and give the sum of risk values
% greater or equal to the risk associated with the
% parent node. If ‘off‘ leaves are not merged.
% ‘weights‘ Vector of observation weights. By default the weight
% of every observation is set to 1. The length of this
% vector must be equal to the number of rows in X.
% ‘surrogate‘ ‘on‘ to find surrogate splits at each branch node.
% Default is ‘off‘. If you set this parameter to ‘on‘
%
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 47772 2014-09-28 16:44 决策树代码\classregtree.m
文件 3601 2014-09-28 16:59 决策树代码\ID3.m
相关资源
- 基于svm dtc 的船舶电力推进系统仿真模
- RSSI的无线定位matlab代码
- 解决含有运动力学约束的路径规划问
- 基于人工势场法做的matlab路径规划算
- 无线传感器网络分簇路由算法的matl
- matlab求解图像灰度梯度
- Dollar的人体行为识别的代码(cuboids
- libsvm SVM分类器
- 剪切波变换 (shearlet transform)
- 稀疏表示分类算法SRC在ORL人脸库上的
-
context-aware-saliency-detection 论文<
- matlab对一个混合灵敏度的系统进行H无
- matlab的SIFT算法程序
- 非线性算法合集(nonlinear algorithm)
- 微电网下逆变器PI环控制
- LTE_A_PUSCH LTE上行双用户matlab仿真代码
- 用于大气辐射传输模型modtran5的matla
- matlab的libsvm3.18工具箱
- 《MATLAB小波分析超级学习手册》随书
- 《MATLAB信号处理超级学习手册》随书
- matlab的随机子空间算法
- 5th WENO Matlab Example 计算流体力学 五阶
-
matlab/simuli
nk仿真的无刷直流电机( - matlab编写的船舶动力定位PID控制函数
- matlab多聚焦图像融合(contourlet)
- Final_PMSM_model
- 透射反射曲线(transmission line )求解
- SOM算法的matlab程序
-
定速风电机组的Matlab/Simuli
nk模型仿 - ARIMA ARIMA模型全称为差分自回归移动平
评论
共有 条评论