资源简介
LTE系统中频率调度算法程序,可实现小区间干扰协调,特别适合初学者。
代码片段和文件信息
function antpar=antparset(varargin)
%ANTPARSET Antenna parameter configuration for SCM
% ANTPAR=ANTPARSET sets default parameters for the input struct ANTPAR.
%
% Default parameters are [ {default} ]:
%
% BsGainPattern - complex BS array element field patterns [ {1} | 4D-array]
% BsGainAnglesAz - azimuth angles (degrees) for BsGainPattern [ {linspace(-18018090)} ]
% BsGainAnglesEl - elevation angles (not used currently)
% BsElementPosition - element spacing for BS linear array in wavelenghts [ {0.5} ]
% MsGainPattern - complex MS array element field patterns [ {1} | 4D-array]
% MsGainAnglesAz - azimuth angles (degrees) for MsGainPattern [ {linspace(-18018090)} ]
% MsGainAnglesEl - elevation angles (not used currently)
% MsElementPosition - element spacing for MS linear array in wavelenghts [ {0.5} ]
% InterpFunction - name of the interpolation function [{‘interp_gain‘}]
% InterpMethod - interpolation method used [{‘cubic‘}]
%
% Some notes about the antenna parameters:
%
% - The complex field patterns are given in linear scale. The antenna gain
% is 20*log10(abs(BsGainPattern)).
% - Field patterns should be defined over the full 360 degree azimuth
% angle. Unless BsGainPattern is a scalar (see below) the intermediate
% values will be interpolated.
% - Only linear arrays are supported currently. The element spacings can
% be given (in wavelengths) in the vectors BsElementPosition and
% MsElementPosition. When a scalar is given (default) uniform spacing
% is assumed.
% - If BsGainPattern and/or MsGainPattern field is a scalar the antenna
% field pattern is assumed constant (equal to the scalar) over the whole
% azimuth angle. For example setting BsGainPattern=SQRT(1.64) (2.15 dB)
% would correspond to a BS dipole array with NumBsElements (see below).
% - When BsGainPattern (MsGainPattern) is a scalar the number of the
% BS (MS) antenna elements is determined from parameters NumBsElements
% (NumMsElements) in the input struct SCMPAR (see SCMPARSET). Otherwise
% the number of elements in the link end is deduced from the dimensions
% of the 4D-array BsGainPattern (MsGainPattern).
% - If BsGainPattern (MsGainPattern) is not a scalar it must be a complex
% 4D-array with dimensions NUM_ELxPOLxELxAZ where NUM_EL is the
% number of array elements POL is 1 or 2 EL is arbitrary and AZ
% is LENGTH(BsGainAnglesAz). If ‘polarized‘ option is used the
% (:11:)th dimension is assumed the vertical polarization and (:21:)
% is assumed the horizontal polarization. Otherwise only the (:11:)th
% dimensions are used. The size of the third dimension is unimportant
% as elevation is not used in the current implementation.
% - SIZE(BsGainPattern4) must equal LENGTH(BsAnglesAz). In other words
% all element patterns ar
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 204 2009-10-19 22:35 图形说明.txt
文件 28416 2009-10-19 22:36 sinr4.jpg
----------- --------- ---------- ----- ----
28620 2
相关资源
- 最新的基于核的相关滤波跟踪法(C
- LTE_A_PUSCH LTE上行双用户matlab仿真代码
- kalman_filter2 北航研究生课程卡尔曼滤
- intercell_interference
- 何凯明暗原色先验去雾的MATLAB代码(
- imm ukf filter
- 全面详解LTE:MATLAB建模、仿真与实现
- FOFDM filtered-ofdm信号处理
- LTE-Synchronous-Signal LTE中主(辅)同步信
- APF_PI+重复控制仿真
- CoherenceFilter_version5各向异性非线性扩
- farrow滤波器测试实例
- MeMBer-filter-label 有标记的势均衡多目标
- corr_on LTE主同步信号PSS在时域上的相关
- DoGfilters DOG高斯差分实现物体识别中的
-
LTE_li
nk_Simulation LTE链路级的仿真 - BilateralFiltering
-
LTE_ba
seband_simulation LTE基带收发仿真 - TheuseandyanjiuofAdaptivefilter 该文档是自适
-
LTE_li
nk_Level_1.3_r620 该仿真平台是L - 22_LS LTE下行链路信道估计
- RClvboq
- Matlab2801568
- TD-LTE 实现了TD-LTE系统上下行结合的程
- BandPassFilter
- LTE_System_Level_1.4_r570
- LTE_channel_estimation 基于3GPP LTE系统的
- SCMEPversion3P1
- LTE_Simulator LTE的系统级仿真平台的搭建
- Coop_MIMO_Cellular_HMMD_Ergodic 3GPP LTE-Advan
评论
共有 条评论