• 大小: 483KB
    文件类型: .rar
    金币: 1
    下载: 0 次
    发布日期: 2021-05-11
  • 语言: 其他
  • 标签: 核fisher  

资源简介

Feature scaling for kernel Fisher discriminant analysis using leave-one-out cross validation. FS-KFDA is a package for implementing feature scaling for kernel fisher discriminant analysis.-Feature scaling for kernel Fisher discrim inant analysis using leave-one-out cross vali dation. FS-KFDA is a package for implementing f eature scaling for kernel fisher discriminant analysis.

资源截图

代码片段和文件信息

clear
load blfsegment;
load segmentindex;
trainnum = 500;
starttime = cputime;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k = 1:10
    % Tanslate the data
    index1            =  segmentindex(k1:trainnum);
    index2            =  segmentindex(k1+trainnum:end);
    trainsamples      =  segmentsamples(index1:);
    testsamples       =  segmentsamples(index2:);
    [trainsamplesAB]=  scaletrain(trainsamples);
    testsamples       =  scaletest(testsamplesAB);
    trainlabels       =  segmentlabels(index1);
    testlabels        =  segmentlabels(index2);
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   calculate the correct rate       
      
    options = optimset(‘GradObj‘‘on‘);
    options = optimset(options‘LargeScale‘‘off‘);
    options = optimset(options‘DerivativeCheck‘‘off‘);
    options = optimset(options‘Display‘‘iter‘);
    options = optimset(options‘MaxIter‘50);
    options = optimset(options‘TolFun‘1e-4);
    options = optimset(options‘TolX‘1e-4);
    options = optimset(options‘LineSearchType‘‘cubicpoly‘);
    
    D = size(trainsamples2);
    x = log(1/D)*ones(size(trainsamples2)1);
    [xfxc]     = fminunc(‘mkfdakernel‘[x;0*ones(11)]optionstrainsamplestrainlabels);
    [abloo(k)] = mkfdakernel(xtrainsamplestrainlabels);
    fprintf(‘%f\n‘loo(k));
    result       = mkfdapred(x trainsamples trainlabelstestsamples);
    testerror(k) = 1 - mean(result == testlabels);
     
     fprintf(‘meanerror = %f\n‘mean(testerror));
     fprintf(‘Iteration = %d\n‘k);
 end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   print the output
endtime   = cputime;
meanerror = mean(testerror);
stderror  = std(testerror);
fprintf(‘meanerror = %f\n‘meanerror);
fprintf(‘stderror  = %f\n‘stderror);
fprintf(‘time      = %f\n‘endtime-starttime);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件       2501  2006-10-10 20:18  fs-kfda 1.0\bench_segment.m

     文件     335224  2006-10-10 17:39  fs-kfda 1.0\blfsegment.mat

     文件        712  2006-10-10 20:26  fs-kfda 1.0\content.m

     文件        568  2006-01-16 11:05  fs-kfda 1.0\evalkernel.m

     文件       1749  2005-07-08 11:22  fs-kfda 1.0\kfdakernel.m

     文件       1186  2005-06-29 11:13  fs-kfda 1.0\kfdapred.m

     文件       2127  2005-04-08 20:18  fs-kfda 1.0\mkfdakernel.m

     文件       1525  2005-04-06 20:36  fs-kfda 1.0\mkfdapred.m

     文件        180  2005-01-21 20:18  fs-kfda 1.0\scaletest.m

     文件        231  2005-06-11 09:41  fs-kfda 1.0\scaletrain.m

     文件     380757  2006-10-10 19:22  fs-kfda 1.0\segmentindex.mat

     文件        380  2011-03-07 11:24  fs-kfda 1.0\注释.txt

     目录          0  2006-10-10 20:15  fs-kfda 1.0

----------- ---------  ---------- -----  ----

               727140                    13


评论

共有 条评论

相关资源