资源简介
基于tensorflow搭建的capsule深度学习网络,并在mnist数据集进行训练
代码片段和文件信息
import numpy as np
import tensorflow as tf
from config import cfg
epsilon = 1e-9
class Capslayer(object):
‘‘‘ Capsule layer.
Args:
input: A 4-D tensor.
num_outputs: the number of capsule in this layer.
vec_len: integer the length of the output vector of a capsule.
layer_type: string one of ‘FC‘ or “CONV“ the type of this layer
fully connected or convolution for the future expansion capability
with_routing: boolean this capsule is routing with the
lower-level layer capsule.
Returns:
A 4-D tensor.
‘‘‘
def __init__(self num_outputs vec_len with_routing=True layer_type=‘FC‘):
self.num_outputs = num_outputs
self.vec_len = vec_len
self.with_routing = with_routing
self.layer_type = layer_type
def __call__(self input kernel_size=None stride=None):
‘‘‘
The parameters ‘kernel_size‘ and ‘stride‘ will be used while ‘layer_type‘ equal ‘CONV‘
‘‘‘
if self.layer_type == ‘CONV‘:
self.kernel_size = kernel_size
self.stride = stride
if not self.with_routing:
# the PrimaryCaps layer a convolutional layer
# input: [batch_size 20 20 256]
assert input.get_shape() == [cfg.batch_size 20 20 256]
‘‘‘
# version 1 computational expensive
capsules = []
for i in range(self.vec_len):
# each capsule i: [batch_size 6 6 32]
with tf.variable_scope(‘ConvUnit_‘ + str(i)):
caps_i = tf.contrib.layers.conv2d(input self.num_outputs
self.kernel_size self.stride
padding=“VALID“ activation_fn=None)
caps_i = tf.reshape(caps_i shape=(cfg.batch_size -1 1 1))
capsules.append(caps_i)
assert capsules[0].get_shape() == [cfg.batch_size 1152 1 1]
capsules = tf.concat(capsules axis=2)
‘‘‘
# version 2 equivalent to version 1 but higher computational
# efficiency.
# NOTE: I can‘t find out any words from the paper whether the
# PrimaryCap convolution does a ReLU activation or not before
# squashing function but experiment show that using ReLU get a
# higher test accuracy. So which one to use will be your choice
capsules = tf.contrib.layers.conv2d(input self.num_outputs * self.vec_len
self.kernel_size self.stride padding=“VALID“
activation_fn=tf.nn.relu)
# capsules = tf.contrib.layers.conv2d(input self.num_outputs * self.vec_len
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-11-10 02:53 CapsNet-Tensorflow-master\
文件 40 2017-11-10 02:53 CapsNet-Tensorflow-master\.gitignore
文件 321 2017-11-10 02:53 CapsNet-Tensorflow-master\CONTRIBUTING.md
文件 11357 2017-11-10 02:53 CapsNet-Tensorflow-master\LICENSE
文件 3914 2017-11-10 02:53 CapsNet-Tensorflow-master\README.md
文件 8946 2017-11-10 02:53 CapsNet-Tensorflow-master\capsla
文件 7090 2017-11-10 02:53 CapsNet-Tensorflow-master\capsNet.py
文件 1631 2017-11-10 02:53 CapsNet-Tensorflow-master\config.py
目录 0 2017-11-10 02:53 CapsNet-Tensorflow-master\imgs\
文件 207236 2017-11-10 02:53 CapsNet-Tensorflow-master\imgs\capsuleVSneuron.png
文件 26606 2017-11-10 02:53 CapsNet-Tensorflow-master\imgs\my_wechat_QR.png
文件 21477 2017-11-10 02:53 CapsNet-Tensorflow-master\imgs\nb312_wechat.png
文件 21824 2017-11-10 02:53 CapsNet-Tensorflow-master\imgs\wechat_group.png
文件 2164 2017-11-10 02:53 CapsNet-Tensorflow-master\main.py
文件 369 2017-11-10 02:53 CapsNet-Tensorflow-master\plot_acc.R
目录 0 2017-11-10 02:53 CapsNet-Tensorflow-master\results\
文件 6442 2017-11-10 02:53 CapsNet-Tensorflow-master\results\accuracy.csv
文件 8583 2017-11-10 02:53 CapsNet-Tensorflow-master\results\accuracy.png
文件 19152 2017-11-10 02:53 CapsNet-Tensorflow-master\results\margin_loss.png
文件 14237 2017-11-10 02:53 CapsNet-Tensorflow-master\results\reconstruction_loss.png
文件 18962 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_000.png
文件 19819 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_005.png
文件 18659 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_010.png
文件 19282 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_015.png
文件 19239 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_020.png
文件 18726 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_025.png
文件 20228 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_030.png
文件 20322 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_035.png
文件 17620 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_040.png
文件 19385 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_045.png
文件 19796 2017-11-10 02:53 CapsNet-Tensorflow-master\results\test_050.png
............此处省略7个文件信息
- 上一篇:蜂群算法源代码
- 下一篇:长方体和正方体的认识flash课件
评论
共有 条评论