资源简介
机器学习算法之线性回归 最小二乘法和岭回归算法的实现,对应博文为:
http://blog.csdn.net/suipingsp/article/details/42101139

代码片段和文件信息
‘‘‘Created on Jun06 2014
Linear Regression algorithm support ordinary least squares ridge Regression
andetc.
@author: Aidan
‘‘‘
from numpy import *
from object_json import *
from copy import *
import pdb
import operator
class linearRegress(object):
def __init__(selfLRDict = None **args):
‘‘‘currently support OLS ridge LWLR
‘‘‘
obj_list = inspect.stack()[1][-2]
self.__name__ = obj_list[0].split(‘=‘)[0].strip()
if not LRDict:
self.LRDict = {}
else:
self.LRDict = LRDict
#to Numpy matraix
if ‘OLS‘ in self.LRDict:
self.LRDict[‘OLS‘] = mat(self.LRDict[‘OLS‘])
if ‘ridge‘ in self.LRDict:
self.LRDict[‘ridge‘][0] = mat(self.LRDict[‘ridge‘][0])
self.LRDict[‘ridge‘][2] = mat(self.LRDict[‘ridge‘][2])
self.LRDict[‘ridge‘][3] = mat(self.LRDict[‘ridge‘][3])
self.LRDict[‘ridge‘][4] = mat(self.LRDict[‘ridge‘][4])
def jsonDumpsTransfer(self):
‘‘‘essential transformation to Python basic type in order to
store as json. dumps as objectname.json if filename missed ‘‘‘
#pdb.set_trace()
if ‘OLS‘ in self.LRDict:
self.LRDict[‘OLS‘] = self.LRDict[‘OLS‘].tolist()
if ‘ridge‘ in self.LRDict:
self.LRDict[‘ridge‘][0] = self.LRDict[‘ridge‘][0].tolist()
self.LRDict[‘ridge‘][2] = self.LRDict[‘ridge‘][2].tolist()
self.LRDict[‘ridge‘][3] = self.LRDict[‘ridge‘][3].tolist()
self.LRDict[‘ridge‘][4] = self.LRDict[‘ridge‘][4].tolist()
def jsonDumps(self filename=None):
‘‘‘dumps to json file‘‘‘
self.jsonDumpsTransfer()
if not filename:
jsonfile = self.__name__+‘.json‘
else: jsonfile = filename
objectDumps2File(self jsonfile)
def jsonloadTransfer(self):
‘‘‘essential transformation to object required type such as numpy matrix
call this function after newobject = objectLoadFromFile(jsonfile)‘‘‘
#pdb.set_trace()
if ‘OLS‘ in self.LRDict:
self.LRDict[‘OLS‘] = mat(self.LRDict[‘OLS‘])
if ‘ridge‘ in self.LRDict:
self.LRDict[‘ridge‘][0] = mat(self.LRDict[‘ridge‘][0])
self.LRDict[‘ridge‘][2] = mat(self.LRDict[‘ridge‘][2])
self.LRDict[‘ridge‘][3] = mat(self.LRDict[‘ridge‘][3])
self.LRDict[‘ridge‘][4] = mat(self.LRDict[‘ridge‘][4])
def solver_OLS(self xMat yMat):
x0Mat = mat(ones((xMat.shape[0]1)))
xMat = hstack((x0Mat xMat))#extend x0=1 for each sample
xTx = xMat.T*xMat
if linalg.det(xTx) == 0.0:
print “This matrix is singular cannot do inverse“
#raise
else:
self.LRDict[‘OLS‘] = xTx.I * (xMat.T*yMat)
def solver_ridg
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 197357 2011-01-19 17:17 linear_regression\abalone.txt
文件 5600 2011-01-08 10:02 linear_regression\ex0.txt
文件 5600 2011-01-18 17:18 linear_regression\ex1.txt
文件 5850 2014-12-22 09:38 linear_regression\linearregress.py
文件 5928 2014-12-22 09:26 linear_regression\linearregress.pyc
文件 2789 2014-12-01 12:11 linear_regression\ob
文件 4100 2014-12-19 10:04 linear_regression\ob
文件 4833 2014-12-22 09:26 linear_regression\testlinearregress.py
目录 0 2014-12-22 09:46 linear_regression
----------- --------- ---------- ----- ----
232057 9
- 上一篇:ocra-1.3.1
- 下一篇:基于FPGA的幅度可调信号发生器
相关资源
- Pythonamp;课堂amp;笔记(高淇amp;400;集第
- Python中Numpy库最新教程
- 用python编写的移动彩信的发送程序
- Python全栈学习笔记面向对象大作业:
- python实现的ftp自动上传、下载脚本
- Python版的A*寻路算法
- IronPython IDE
- ppt 机器学习.ppt
- Logistic回归总结非常好的机器学习总结
- Convex Analysis and Optimization (Bertsekas
- 机器学习个人笔记完整版v5.2-A4打印版
- JUNIOR:粒子物理学中无监督机器学习
- GM(11)模型与线性回归组合方法在矿
- 基于改进灰色模型的矿井瓦斯涌出量
- 语料库.zip
- pip-10.0.1.tar.gz
- Data Science from Scratch 2nd Edition
- 中国科学技术大学 研究生课程 机器学
- 遗传算法越野小车unity5.5
- 吴恩达机器学习编程题
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 机器学习实战高清pdf,中文版+英文版
- 李宏毅-机器学习(视频2017完整)
- 爬取豆瓣电影TOP250程序,包含非常详
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- Wikipedia机器学习迷你电子书之四《D
- Learning From Data Yaser S. Abu-Mostafa
- 中文维基百科语料库百度网盘网址.
- MSCNN_dehaze.rar
评论
共有 条评论