-
大小: 2KB文件类型: .zip金币: 2下载: 1 次发布日期: 2021-05-16
- 语言: 其他
- 标签:
资源简介
第一课第三周浅层神经网络编程作业,两个文件,亲测可用!
代码片段和文件信息
# -*- coding: utf-8 -*-
“““
Created on Sun Apr 15 22:34:06 2018
@author: StephenGai
“““
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def load_planar_dataset():
np.random.seed(1)
m = 400 # number of examples
N = int(m / 2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m D)) # data matrix where each row is a single example
Y = np.zeros((m 1) dtype=‘uint8‘) # labels vector (0 for red 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N * j N * (j + 1))
t = np.linspace(j * 3.12 (j + 1) * 3.12 N) + np.random.randn(N) * 0.2 # theta
r = a * np.sin(4 * t) + np.random.randn(N) * 0.2 # radius
X[ix] = np.c_[r * np.sin(t) r * np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X Y
def plot_decision_boundary(model X y):
# Set min and max values and give it some padding
x_min x_max = X[0 :].min() - 1 X[0 :].max() + 1
y_min y_max = X[1 :].min() - 1 X[1 :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx yy = np.meshgrid(np.arange(x_min x_max h) np.arange(y_min y_max h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel() yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx yy Z cmap=plt.cm.Spectral)
plt.ylabel(‘x2‘)
plt.xlabel(‘x1‘)
plt.scatter(X[0 :] X[1 :] c=y[0 :] cmap=plt.cm.Spectral)
def sigmoid(x):
“““
Compute the sigmoid of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- sigmoid(x)
“““
s = 1 / (1 + np.exp(-x))
return s
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N factor=.5 noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N random_state=5 n_features=2 centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None cov=0.5 n_samples=N n_features=2 n_classes=2 shuffle=True random_state=None)
no_structure = np.random.rand(N 2) np.random.rand(N 2)
return noisy_circles noisy_moons blobs gaussian_quantiles no_structure
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 4767 2018-04-17 12:12 testCases_v2.py
文件 2551 2018-04-17 20:38 planar_utils.py
- 上一篇:cocos2d-x Label源码
- 下一篇:使用MsChart所需要的头文件
评论
共有 条评论