资源简介
粒子群算法 实现 最短路径,解决TSL多旅行商问题,以此为基础解决VRP问题

代码片段和文件信息
package algoProject;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class PSOSolution {
public static final long serialVersionUID = 1L;
public static final int VEHICLE_COUNT = 30;
public static final int MAX_VELOCITY = 4;
public static final int MAX_ITERATION = 100;
private static ArrayList vehicles = new ArrayList();
public static ArrayList stations = new ArrayList();
public static final int STATION_COUNT = 10;
public static final double TARGET = 86.63;
public static int X[] = new int[STATION_COUNT];
public static int Y[] = new int[STATION_COUNT];
public List> pathList;
public List finalList;
public void initializePath()
{
for (int i = 0; i < STATION_COUNT; i++) {
X[i] = new Random().nextInt(30);
Y[i] = new Random().nextInt(30);
}
for (int i = 0; i < STATION_COUNT; i++) {
VisitingStations station = new VisitingStations();
station.x(X[i]);
station.y(Y[i]);
stations.add(station);
}
return;
}
public void executePSO() {
Vehicle vehicle = null;
int iterationNo = 0;
boolean done = false;
pathList = new ArrayList<>();
initialize();
while (!done) {
if (iterationNo < MAX_ITERATION) {
for (int i = 0; i < VEHICLE_COUNT; i++) {
List sublist = new ArrayList<>();
vehicle = vehicles.get(i);
System.out.print(“Route: “);
for (int j = 0; j < STATION_COUNT; j++) {
System.out.print(vehicle.getStationData(j) + “ “);
sublist.add(vehicle.getStationData(j));
}
findTotalDistance(i);
System.out.print(“Distance: “ + vehicle.getVehicleBest() + “\n“);
if (vehicle.getVehicleBest() <= TARGET) {
done = true;
}
pathList.add(sublist);
}
bubbleSort();
fitnessFunction();
updatevehicles();
System.out.println(“iterationNo number: “ + iterationNo);
iterationNo++;
} else {
done = true;
}
}
return;
}
public void initialize() {
for (int i = 0; i < VEHICLE_COUNT; i++) {
Vehicle newVehicle = new Vehicle(STATION_COUNT);
for (int j = 0; j < STATION_COUNT; j++) {
newVehicle.setStationData(j j);
}
vehicles.add(newVehicle);
for (int j = 0; j < 10; j++) {
randomStationArrange(vehicles.indexOf(newVehicle));
}
findTotalDistance(vehicles.indexOf(newVehicle));
}
return;
}
private static void randomStationArrange(final int index) {
int stationA = new Random().nextInt(STATION_COUNT);
int stationB = 0;
boolean done = false;
while (!done) {
stationB = new Random().nextInt(STATION_COUNT);
if (stationB != stationA) {
done = true;
}
}
int temp = vehicles.get(index).getStationData(stationA);
vehicles.get(index).setStationData(stationA vehicles.get(index).getStationData(stationB));
vehicles.get(index).setStationData(stati
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\
文件 7172 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\PSOSolution.java
文件 37 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\README.md
文件 4422 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\Simulation.java
文件 1147 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\Vehicle.java
文件 406 2017-05-10 02:04 vehicle-path-optimization-using-pso-master\VisitingStations.java
- 上一篇:计算机网络谢希仁第七版课后答案完整版
- 下一篇:Axure手机开发必用的设计素材
相关资源
- 爱普生(EPSON)L3151 3153 3156 3157 3158不
- 自适应粒子群优化算法及其应用
- EPSON打印机程序设计指南(ESC/POS指令
- epson 2020黑白激光打印机驱动 win7/win
- L111墨水恢复软件
- EPSON T50 x86 32bit v6.62 爱普生打印机简
- 基于PSO优化BP神经网络的水质预测研究
- epson wf2750 64位 驱动
- 基于Spark的PSO并行计算
- 粒子群微电网优化调度
- 微电网PSO优化算法
- IBM Rational Harmony Deskbook _基于模型的系
- pso并行化算法.rar
- 粒子群算法参考论文权威
- Particle Swarm Optimization粒子群算法原版
- EPSON Stylus Photo R330 清零中文版
- EPson Photo1390 百度西EP601 ICC
- Epson L111 L211 L301 L303 L351 L353 L358 L551清
- EPSON L3115 L3118 l3119 打印机清零软件+教
- epson me350扫描驱动 官方版
- EPSON ME330 清零软件 免费
- EPSON L101+L201废墨清零
- EPSON L1110 Series 废墨清零软件含教程
- 爱普生Epson lq590k打印机驱动 v7.3.10sc
- EPSON L110-L210-L300-L350-L355 清零软件
- Epson爱普生LQ-50K针式打印机驱动 v1.0
- epson 690k pro驱动
- 基于粒子群算法优化RBF神经网络的异
-
epson
m>m m>101清 - 基于Grid-Search_PSO优化SVM回归预测矿井
评论
共有 条评论