资源简介
Saliency Detection with Multi-Scale Superpixels对应的源码
代码片段和文件信息
function imsegs = APPgetSpStats(imsegs)
% imsegs = APPgetSpStats(imsegs)
% Gets basic information about the superpixels
%
% Copyright(C) Derek Hoiem Carnegie Mellon University 2005
% Current Version: 1.0 09/30/2005
for ii = 1:length(imsegs)
nseg = imsegs(ii).nseg;
segimage = double( imsegs(ii).segimage );
imh = size(segimage 1);
adjmat = eye([nseg nseg]);
% get adjacency
dx = segimage ~= segimage(:[2:end end]);
dy = segimage ~= segimage([2:end end] :);
ind1 = find(dy);
ind2 = ind1 + 1;
s1 = segimage(ind1);
s2 = segimage(ind2);
% adjmat(s1 + nseg*(s2-1)) = 1;
% adjmat(s2 + nseg*(s1-1)) = 1;
adjmat(sub2ind([nseg nseg] s1 s2)) = 1;
adjmat(sub2ind([nseg nseg] s2 s1)) = 1;
ind3 = find(dx);
ind4 = ind3 + imh;
s3 = segimage(ind3);
s4 = segimage(ind4);
% adjmat(s3 + nseg*(s4-1)) = 1;
% adjmat(s4 + nseg*(s3-1)) = 1;
adjmat(sub2ind([nseg nseg] s3 s4)) = 1;
adjmat(sub2ind([nseg nseg] s4 s3)) = 1;
% slower code
% [height width] = size(segimage);
%
% for y = 1:height-1
% for x = 1:width-1
% s1 = segimage(y x);
% s2 = segimage(y+1 x);
% s3 = segimage(y x+1);
% if s1 > 0
% npixels(s1) = npixels(s1) + 1;
% if s2 > 0
% adjmat(s1 s2) = 1;
% adjmat(s2 s1) = 1;
% end
% if s3 > 0
% adjmat(s1 s3) = 1;
% adjmat(s3 s1) = 1;
% end
% end
% end
% end
%
% x = width;
% for y = 1:height
% s1 = segimage(y x);
% if s1 > 0
% npixels(s1) = npixels(s1) + 1;
% end
% end
%
% y = height;
% for x = 1:width-1
% s1 = segimage(y x);
% if s1 > 0
% npixels(s1) = npixels(s1) + 1;
% end
% end
stats = regionprops(segimage ‘Area‘);
imsegs(ii).npixels = vertcat(stats(:).Area);
imsegs(ii).adjmat = logical(adjmat);
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2232 2011-06-10 10:50 code-SPL-MS\APPgetSpStats.m
文件 527 2014-08-17 10:44 code-SPL-MS\bayesian.m
文件 399 2009-11-25 10:36 code-SPL-MS\BoostImage.m
文件 2809 2009-11-25 10:35 code-SPL-MS\BoostMatrix.m
文件 931 2012-03-20 15:31 code-SPL-MS\boxfilter.m
文件 19456 2012-03-29 22:22 code-SPL-MS\CBsegment\mexSegment.mexw32
文件 23040 2012-12-05 12:00 code-SPL-MS\CBsegment\mexSegment.mexw64
文件 781 2014-08-15 09:56 code-SPL-MS\CBsegment\README
文件 1420 2010-12-22 19:52 code-SPL-MS\ColorHarris.m
文件 516 2011-06-05 10:25 code-SPL-MS\computeColorCenter.m
文件 963 2013-03-01 15:22 code-SPL-MS\computeColorWeight.m
文件 2293 2013-11-15 15:39 code-SPL-MS\computeOneScaleSmap_fast.m
文件 1230 2011-06-07 17:51 code-SPL-MS\computeQuantMatrix.m
文件 541 2012-04-27 15:35 code-SPL-MS\computeRegionHist.m
文件 1842 2014-08-17 10:30 code-SPL-MS\cu_demo.m
文件 6829 2014-08-17 10:38 code-SPL-MS\cu_Saliency_map.m
文件 303 2005-10-19 10:23 code-SPL-MS\dilation33.m
文件 534 2010-12-24 10:56 code-SPL-MS\elimatepoint.m
文件 1143 2005-06-10 14:33 code-SPL-MS\fill_border.m
文件 974 2006-08-08 16:19 code-SPL-MS\gDer.m
文件 754 2006-08-08 16:45 code-SPL-MS\getmaxpoints.m
文件 957 2012-03-20 15:31 code-SPL-MS\guidedfilter.m
文件 322 2011-06-05 10:16 code-SPL-MS\histDist.m
文件 713 2011-06-07 22:09 code-SPL-MS\im2superpixels.m
文件 27009 2007-06-13 17:00 code-SPL-MS\imgs\0_0_272.jpg
文件 14766 2007-06-13 17:00 code-SPL-MS\imgs\0_0_280.jpg
文件 3212 2011-06-10 10:52 code-SPL-MS\mergeAdjacentRegions_fast.m
文件 12288 2012-03-29 22:22 code-SPL-MS\mexMergeAdjacentRegions.mexw32
文件 13312 2012-12-05 12:00 code-SPL-MS\mexMergeAdjacentRegions.mexw64
文件 521 2014-08-17 10:35 code-SPL-MS\multi_saliency.m
............此处省略10个文件信息
相关资源
- Saliency Detection via Absorbing Markov Chain 中
- mmdetection-中文文档(自己翻译).pdf
-
ob
ject Detection 目标检测 思维导图 - Facedetectionfacerecognitiondataset.txt
- SVM+HOG+LBP
- Dynamic_Data_Race_Detection
- Louvain快速社区发现算法Fast unfolding算
- Rapid detection of virulent factors of Aeromon
- The assembly of a novel enzyme biosensor for a
- Detection Estimation and Modulation Theory Par
- Early detection in urinary proteome for the ef
- Implication of urinary KIM-1 mRNA detection in
- 虚假新闻检测的自然语言处理研究综
-
ba
sed.Radar.Detection.Tracking.And.Classifi - Learning Rich Features for Image Manipulation
- Quickest Detection_H. Vincent Poor(2008)
- deep learning for anomaly detection a survey(深
- ship detection
- 基于内容的视频镜头检测
-
Mimicking Very Efficient Network for ob
ject - CNM社团检测算法
评论
共有 条评论