• 大小: 7KB
    文件类型: .zip
    金币: 1
    下载: 0 次
    发布日期: 2021-06-09
  • 语言: 其他
  • 标签: ICA  

资源简介

ICA程序,利用Infomax算法实现,比较实用,建议跳过最优成分数估计,直接手动输入。

资源截图

代码片段和文件信息

function [SAUllinfo]=icaML(XKpardebug_draw)

% icaML     : ICA by ML (Infomax) with square mixing matrix and no noise.

%

% function [SAUllinfo]=icaML(X[K][par]) Independent component analysis (ICA) using

%                                       maximum likelihood square mixing matrix and 

%                                       no noise [1] (Infomax). Source prior is assumed 

%                                       to be p(s)=1/pi*exp(-ln(cosh(s))). For optimization

%                                       the BFGS algorithm is used [2]. See code for 

%                                       references.

%                                       

%                                       X  : Mixed signals

%                                       K  : Number of source components.

%                                           For K=0 (default) number of sources are equal to number of

%                                           observations.

%                                           For K < number of observations SVD is used to reduce the

%                                           dimension.

%                                       par:  Vector with 4 elements:

%                                           (1)  :  Expected length of initial step

%                                           Stopping criteria:

%                                           (2)  :  Gradient  ||g||_inf <= par(2) 

%                                           (3)  :  Parameter changes ||dW||_2  <= par(3)*(par(3) + ||W||_2)

%                                           (4)  :  Maximum number of iterations 

%                                           Any illegal element in  opts  is replaced by its

%                                           default value  [1  1e-4*||g(x0)||_inf  1e-8  100]

%                                       debug_draw : Draw debug information

%                                       

%                                       S  : Estimated source signals with variance

%                                            scaled to one.

%                                       A  : Estimated mixing matrix

%                                       U  : Principal directions of preprocessing PCA. 
%                                            If K (the number of sources) is equal to the number
%                                            of observations then no PCA is performed and U=eye(K).  
%                                       ll : Log likelihood for estimated sources

%                                       info :  Performance information vector with 6 elements:

%                                           (1:3)  : final values of [ll  ||g||_inf  ||dx||_2] 

%                                           (4:5)  : no. of iteration steps and evaluations of (llg)

%                                           (6)    : 1 means stopped by small gradient

%                                                    2 mea

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     文件       15496  2003-09-09 13:37  MLcorrected\icaML.m
     文件        3347  2006-06-22 14:15  MLcorrected\icaML_bic.m
     文件         845  2002-12-18 14:56  MLcorrected\script_demo.m

评论

共有 条评论