-
大小: 12KB文件类型: .rar金币: 1下载: 0 次发布日期: 2021-06-14
- 语言: 其他
- 标签: EMDCEEMDAN
资源简介
EEMD通过添加高斯白噪声并进行平均的方法,解决了EMD的模态混叠问题。但其会因为白噪声残留较大,导致筛分次数增加,以及分解失败,因而计算效率不高。针对以上问题,Torres等提出了一种噪声自适应完备总体平均经验模态分解(Complete EEMD with Adaptive Noise,CEEMDAN)方法。该方法特别适合ECG信号处理。
代码片段和文件信息
function [modes its]=ceemdan(xNstdNRMaxIter)
% WARNING: for this code works it is necessary to include in the same
%directoy the file emd.m developed by Rilling and Flandrin.
%This file is available at %http://perso.ens-lyon.fr/patrick.flandrin/emd.html
%We use the default stopping criterion.
%We use the last modification: 3.2007
%
% This version was run on Matlab 7.10.0 (R2010a)
%----------------------------------------------------------------------
% INPUTs
% x: signal to decompose
% Nstd: noise standard deviation
% NR: number of realizations
% MaxIter: maximum number of sifting iterations allowed.
%
% OUTPUTs
% modes: contain the obtained modes in a matrix with the rows being the modes
% its: contain the sifting iterations needed for each mode for each realization (one row for each realization)
% -------------------------------------------------------------------------
% Syntax
%
% modes=ceemdan(xNstdNRMaxIter)
% [modes its]=ceemdan(xNstdNRMaxIter)
%
%--------------------------------------------------------------------------
% This algorithm was presented at ICASSP 2011 Prague Czech Republic
% Plese if you use this code in your work please cite the paper where the
% algorithm was first presented.
% If you use this code please cite:
%
% M.E.TORRES M.A. COLOMINAS G. SCHLOTTHAUER P. FLANDRIN
% “A complete Ensemble Empirical Mode decomposition with adaptive noise“
% IEEE Int. Conf. on Acoust. Speech and Signal Proc. ICASSP-11 pp. 4144-4147 Prague (CZ)
%
% -------------------------------------------------------------------------
% Date: June 062011
% Authors: Torres ME Colominas MA Schlotthauer G Flandrin P.
% For problems with the code please contact the authors:
% To: macolominas(AT)bioingenieria.edu.ar
% CC: metorres(AT)santafe-conicet.gov.ar
% -------------------------------------------------------------------------
x=x(:)‘;
desvio_x=std(x);
x=x/desvio_x;
modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
acum=zeros(size(x));
iter=zeros(NRround(log2(length(x))+5));
for i=1:NR
white_noise{i}=randn(size(x));%creates the noise realizations
end;
for i=1:NR
modes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;
for i=1:NR %calculates the first mode
temp=x+Nstd*white_noise{i};
[temp o it]=emd(temp‘MAXMODES‘1‘MAXITERATIONS‘MaxIter);
temp=temp(1:);
aux=aux+temp/NR;
iter(i1)=it;
end;
modes=aux; %saves the first mode
k=1;
aux=zeros(size(x));
acum=sum(modes1);
while nnz(diff(sign(diff(x-acum))))>2 %calculates the rest of the modes
for i=1:NR
tamanio=size(modes_white_noise{i});
if tamanio(1)>=k+1
noise=modes_white_noise{i}(k:);
noise=noise/std(noise);
noise=Nstd*noise;
try
[temp o it]=emd(x-acum+std(x-acum)*noise‘MAXMODES‘1‘MAXITE
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1695 2011-06-06 20:10 example_ICASSP2011.m
文件 3560 2011-06-06 18:31 ceemdan.m
文件 1460 2011-06-01 15:06 ecg.mat
文件 3331 2011-06-06 18:30 eemd.m
文件 22276 2010-12-03 15:29 emd.m
----------- --------- ---------- ----- ----
32322 5
- 上一篇:VFP课程设计货物管理系统
- 下一篇:ADS1115_MSP430_程序
评论
共有 条评论