• 大小:
    文件类型: .rar
    金币: 1
    下载: 0 次
    发布日期: 2022-07-11
  • 语言: 其他
  • 标签:

资源简介

深度学习21个项目实例

资源截图

代码片段和文件信息

# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


def weight_variable(shape):
    initial = tf.truncated_normal(shape stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1 shape=shape)
    return tf.Variable(initial)


def conv2d(x W):
    return tf.nn.conv2d(x W strides=[1 1 1 1] padding=‘SAME‘)


def max_pool_2x2(x):
    return tf.nn.max_pool(x ksize=[1 2 2 1]
                          strides=[1 2 2 1] padding=‘SAME‘)


if __name__ == ‘__main__‘:
    # 读入数据
    mnist = input_data.read_data_sets(“MNIST_data/“ one_hot=True)
    # x为训练图像的占位符、y_为训练图像标签的占位符
    x = tf.placeholder(tf.float32 [None 784])
    y_ = tf.placeholder(tf.float32 [None 10])

    # 将单张图片从784维向量重新还原为28x28的矩阵图片
    x_image = tf.reshape(x [-1 28 28 1])

    # 第一层卷积层
    W_conv1 = weight_variable([5 5 1 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    # 第二层卷积层
    W_conv2 = weight_variable([5 5 32 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1 W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    # 全连接层,输出为1024维的向量
    W_fc1 = weight_variable([7 * 7 * 64 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2 [-1 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat W_fc1) + b_fc1)
    # 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1 keep_prob)

    # 把1024维的向量转换成10维,对应10个类别
    W_fc2 = weight_variable([1024 10])
    b_fc2 = bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop W_fc2) + b_fc2

    # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_ logits=y_conv))
    # 同样定义train_step
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    # 定义测试的准确率
    correct_prediction = tf.equal(tf.argmax(y_conv 1) tf.argmax(y_ 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction tf.float32))

    # 创建Session和变量初始化
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())

    # 训练20000步
    for i in range(20000):
        batch = mnist.train.next_batch(50)
        # 每100步报告一次在验证集上的准确度
        if i % 100 == 0:
            train_accuracy = accuracy.eval(feed_dict={
                x: batch[0] y_: batch[1] keep_prob: 1.0})
            print(“step %d training accuracy %g“ % (i train_accuracy))
        train_step.run(feed_dict={x: batch[0] y_: batch[1] keep_prob: 0.5})

    # 训练结束后报告在测试集上的准确度
    print(“test accuracy %g“ % accuracy.eval(feed_dict={
        x: mnist.test.images y_: mnist.test.labels keep_prob: 1.0}))

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件       1676  2018-05-04 12:04  Deep-Learning-21-Examples-master\.gitignore

     文件       3222  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\convolutional.py

     文件        871  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\download.py

     文件        576  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\label.py

     文件    1648877  2018-07-24 15:11  Deep-Learning-21-Examples-master\chapter_1\MNIST_data\t10k-images-idx3-ubyte.gz

     文件       4542  2018-07-24 15:11  Deep-Learning-21-Examples-master\chapter_1\MNIST_data\t10k-labels-idx1-ubyte.gz

     文件    9912422  2018-07-24 15:11  Deep-Learning-21-Examples-master\chapter_1\MNIST_data\train-images-idx3-ubyte.gz

     文件      28881  2018-07-24 15:11  Deep-Learning-21-Examples-master\chapter_1\MNIST_data\train-labels-idx1-ubyte.gz

     文件       2554  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\README.md

     文件       1120  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\save_pic.py

     文件       2487  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_1\softmax_regression.py

     文件       1447  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\delete_broken_img.py

     文件         89  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\.gitignore

     文件       4264  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docker\Dockerfile

     文件      25553  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\1-inputs.png

     文件     101045  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\1-targets.png

     文件      99973  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\1-tensorflow.png

     文件      10630  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\1-torch.jpg

     文件     117940  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\418.png

     文件      18392  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\5-inputs.png

     文件      95452  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\5-targets.png

     文件      97818  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\5-tensorflow.png

     文件       8524  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\5-torch.jpg

     文件      51210  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\51-inputs.png

     文件     100405  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\51-targets.png

     文件     112270  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\51-tensorflow.png

     文件      13039  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\51-torch.jpg

     文件      35342  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\95-inputs.png

     文件      81306  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\95-targets.png

     文件     113817  2018-05-04 12:04  Deep-Learning-21-Examples-master\chapter_10\pix2pix-tensorflow\docs\95-tensorflow.png

............此处省略985个文件信息

评论

共有 条评论