• 大小: 145.91MB
    文件类型: .pdf
    金币: 1
    下载: 0 次
    发布日期: 2022-11-16
  • 语言: 其他
  • 标签:

资源简介

深度强化学习是深度学习算法和强化学习算法的巧妙结合, 它是一种新兴的通用人工智能算法技术, 也是机器学习的前沿技术, DRL算法潜力无限, AlphaGo是目前该算法最成功的使用案例。DRL算法以马尔科夫决策过程为基础, 是在深度学习强大的非线性函数的拟合能力下构成的一种增强算法。深度强化学习算法主要包括基于动态规划 (DP) 的算法以及基于策略优化的算法, 这本书共10章, 首先以AlphaGo在围棋大战的伟大事迹开始, 引起对人工智能发展和现状的介绍, 进而介绍深度强化学习的基本知识。然后分别介绍了强化学习 (重点介绍蒙特卡洛算法和时序差分算法) 和深度学习的基础知识、功能神经网络层、卷积神经网络 (CNN)、循环神经网络 (RNN), 以及深度强化学习的理论基础和当前主流的算法框架。最后介绍了深度强化学习在不同领域的几个应用实例。

资源截图

代码片段和文件信息

评论

共有 条评论