资源简介

该文件包含有一个inceptionv3的网络,以及制作和读取TFRecord格式的数据集的方法。

资源截图

代码片段和文件信息

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import math


def _variable(name shape):
  “““Helper to create a Variable stored on CPU memory.

  Args:
    name: name of the variable
    shape: list of ints

  Returns:
    Variable Tensor
  “““
  with tf.device(‘/gpu:0‘):
    var = tf.get_variable(name shape)
  return var

def batch_norm(x_tensorname=None):
    meanvariance=tf.nn.moments(x_tensoraxes = [0])
    L=tf.nn.batch_normalization(x_tensormeanvariance0.0110.001name = name)
    return L


def conv_layer(inputshapestrideactivation=Truepadding=‘VALID‘name=None):
    in_channel=shape[2]
    out_channel=shape[3]
    k_size=shape[0]
    with tf.variable_scope(name) as scope:
        kernel=_variable(‘conv_weights‘shape = shape)

        conv=tf.nn.conv2d(input = inputfilter = kernelstrides = stridepadding =padding)
        biases=_variable(‘biases‘[out_channel])
        bias=tf.nn.bias_add(convbiases)
        bias = batch_norm(bias ‘bn‘)
        if activation is True:

            conv_out=tf.nn.relu(biasname = ‘relu‘)
        else:
            conv_out=bias
        return conv_out

def conv_inception(input shape stride= [1111] activation = True padding = ‘SAME‘ name = None):
    in_channel = shape[2]
    out_channel = shape[3]
    k_size = shape[0]
    with tf.variable_scope(name) as scope:
        kernel = _variable(‘conv_weights‘ shape = shape)
        conv = tf.nn.conv2d(input = input filter = kernel strides = stride padding = padding)
        biases = _variable(‘biases‘ [out_channel])
        bias = tf.nn.bias_add(conv biases)
        if activation is True:
            conv_out = tf.nn.relu(bias name = ‘relu‘)
        else:
            conv_out = bias
        return conv_out

def inception_block_tradition(input name=None):

    with tf.variable_scope(name) as scope:
        with tf.variable_scope(“Branch_0“):
            branch_0=conv_inception(inputshape = [1128864]name = ‘0a_1x1‘)
        with tf.variable_scope(‘Branch_1‘):
            branch_1=conv_inception(inputshape = [1128848]name = ‘0a_1x1‘)
            branch_1=conv_inception(branch_1shape = [554864]name = ‘0b_5x5‘)
        with tf.variable_scope(“Branch_2“):
            branch_2=conv_inception(inputshape = [1128864]name = ‘0a_1x1‘)
            branch_2=conv_inception(branch_2shape = [336496]name = ‘0b_3x3‘)
        with tf.variable_scope(‘Branch_3‘):
            branch_3=tf.nn.avg_pool(inputksize = (1331)strides = [1111]padding = ‘SAME‘name = ‘Avgpool_0a_3x3‘)
            branch_3=conv_inception(branch_3shape = [1128864]name = ‘0b_1x1‘)
        inception_out=tf.concat([branch_0branch_1branch_2branch_3]3)
        b=1 # for debug
        return inception_out

def inception_grid_reduction_1(inputname=None):

    with tf.variable_scope(name) as scope:
        with tf.variable_scope(“Branch_0“):

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件        153  2018-05-26 10:40  tensorflow-tfrecord\.idea\codestyles\codestyleConfig.xml

     文件        198  2018-05-26 10:40  tensorflow-tfrecord\.idea\codestyles\Project.xml

     文件         86  2018-03-18 15:56  tensorflow-tfrecord\.idea\dictionaries\zhang.xml

     文件        492  2018-05-26 10:41  tensorflow-tfrecord\.idea\google_net.iml

     文件        185  2018-05-26 10:41  tensorflow-tfrecord\.idea\misc.xml

     文件        272  2018-03-18 15:53  tensorflow-tfrecord\.idea\modules.xml

     文件      36283  2018-05-28 20:46  tensorflow-tfrecord\.idea\workspace.xml

     文件      19502  2018-05-28 19:38  tensorflow-tfrecord\demo.py

     文件      29869  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0241.jpg

     文件      37834  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0242.jpg

     文件      39620  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0243.jpg

     文件      27486  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0244.jpg

     文件      51546  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0245.jpg

     文件      51051  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0246.jpg

     文件      27496  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0247.jpg

     文件      29280  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0248.jpg

     文件      31243  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0249.jpg

     文件      25481  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0250.jpg

     文件      30929  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0251.jpg

     文件      58349  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0252.jpg

     文件      49208  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0253.jpg

     文件      26639  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0254.jpg

     文件      38494  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0255.jpg

     文件      31550  2006-05-05 07:03  tensorflow-tfrecord\jpg\bluebell\image_0256.jpg

     文件      30950  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0257.jpg

     文件      50187  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0258.jpg

     文件      30159  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0259.jpg

     文件      41462  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0260.jpg

     文件      43310  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0261.jpg

     文件      35088  2006-05-05 07:04  tensorflow-tfrecord\jpg\bluebell\image_0262.jpg

............此处省略1366个文件信息

评论

共有 条评论