资源简介
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择、疾病诊断中的应用。
代码片段和文件信息
相关资源
- Logistic回归总结非常好的机器学习总结
- Convex Analysis and Optimization (Bertsekas
- 机器学习个人笔记完整版v5.2-A4打印版
- JUNIOR:粒子物理学中无监督机器学习
- 语料库.zip
- 中国科学技术大学 研究生课程 机器学
- 遗传算法越野小车unity5.5
- 吴恩达机器学习编程题
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 机器学习实战高清pdf,中文版+英文版
- 李宏毅-机器学习(视频2017完整)
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- Wikipedia机器学习迷你电子书之四《D
- Learning From Data Yaser S. Abu-Mostafa
- 北大林宙辰:机器学习一阶算法的优
- 李宏毅深度学习ppt
- 机器学习方法R实现-用决策树、神经网
- 数字金融反欺诈白皮书
- 机器学习班PPT原件全邹博
- 机器学习实战(源码和数据样本)
- 计算广告含有目录 刘鹏版
- 数据挖掘导论完整版PPT及课后习题答
- kaggle信用卡欺诈数据
- 机器学习技法原始讲义和课程笔记
- 机器学习数学 陈希孺《 概率论与数理
- 概率论与数理统计陈希孺
- 哈尔滨工业大学深圳 机器学习 2017 考
- [概率论与数理统计]陈希孺带目录
- 刘鹏计算广告完整超清晰带目录版
评论
共有 条评论