资源简介
基于英伟达的jpegNPP工程,分离实现独立的JPEG压缩。

代码片段和文件信息
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED “AS IS“ WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL INDIRECT INCIDENTAL
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE DATA OR PROFITS WHETHER IN AN ACTION OF CONTRACT NEGLIGENCE
* OR OTHER TORTIOUS ACTION ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a “commercial item“ as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of
* “commercial computer software“ and “commercial computer software
* documentation“ as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995) all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*/
// This sample needs at least CUDA 5.5 and a GPU that has at least Compute Capability 2.0
// This sample demonstrates a simple image processing pipeline.
// First a JPEG file is huffman decoded and inverse DCT transformed and dequantized.
// Then the different planes are resized. Finally the resized image is quantized forward
// DCT transformed and huffman encoded.
#include “cuda_functions.h“
#include
#include
#include
#include “Endianess.h“
#include
#include
#include
#include
#include
#include
using namespace std;
struct frameHeader
{
unsigned char nSamplePrecision;
unsigned short nHeight;
unsigned short nWidth;
unsigned char nComponents;
unsigned char aComponentIdentifier[3];
unsigned char aSamplingFactors[3];
unsigned char aQuantizationTableSelector[3];
};
struct ScanHeader
{
unsigned char nComponents;
unsigned char aComponentSelector[3];
unsigned char aHuffmanTablesSelector[3];
unsigned char nSs;
unsigned char nSe;
unsigned char nA;
};
struct QuantizationTable
{
unsigned char nPrecisionAndIdentifier;
unsigned char aTable[64];
};
struct HuffmanTable
{
unsigned char nClassAndIdentifier;
unsigned char aCodes[16];
unsigned char aTable[256];
};
int DivUp(int x int d)
{
return (x + d - 1) / d;
}
template
void writeAndAdvance(unsigned char *&p
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2032 2016-11-01 07:39 jpegNPP编码\Endianess.h
文件 5189 2017-08-08 15:17 jpegNPP编码\RGB2YUV.cu
文件 639 2017-08-08 15:19 jpegNPP编码\cuda_functions.h
文件 20207 2017-08-08 15:18 jpegNPP编码\jpegNPP.cpp
目录 0 2017-08-08 15:17 jpegNPP编码\
相关资源
- NVIDIAOpticalFlowSDK-79c6cee80a2df9a196f20afd6
- MPI和CUDA在多层快速多极子中的应用
- CUDA实现的图像融合算法
- GPU高性能运算之CUDA源代码
- CUDA实现稀疏大矩阵乘法
- 使用CUDA做图像模湖匹配
- 深入浅出谈CUDA.
- 基于CUDA 的矩阵乘法和FFT 性能测试
- 《GPU高性能计算之CUDA》书中源代码
- CUDA9.2及cudnn7.1 for win10
- CUDA Fortran for Scientists and Engineers[英文
- _CPU_GPU协同并行计算研究综述_cuda_op
- nVIDIA显卡CUDA性能测试工具,可测试
- CUDA的图像分割并行算法的设计与实现
- Jetson-TX2手动安装CUDA和Cudnn.pdf
- cuda_cudpp源码
- 《CUDA C编程权威指南》的源码
- matconvnet的gpu编译版本(cuda7.5)
- NVAPI_R410-developer
- nvdia cuda c best practices guide
- CUDA && GPU 数据传输测试
- The CUDA Handbook: A Comprehensive Guide to
- CUDA by Example英文原书+自带源代码
- jpeg编码实现
- CUDA_C_Programming_Guide中文版
- GPU计算高级优化技术精简手册
- C实现的JPEG编码源代码,决定真实
- meanFilter.zip
- CUDA并行排序(1)——整数
- CUDA和OPENCL遥感影像正射校正
评论
共有 条评论