资源简介
基于英伟达的jpegNPP工程,分离实现独立的JPEG压缩。
代码片段和文件信息
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED “AS IS“ WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY NONINFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL INDIRECT INCIDENTAL
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE DATA OR PROFITS WHETHER IN AN ACTION OF CONTRACT NEGLIGENCE
* OR OTHER TORTIOUS ACTION ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a “commercial item“ as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of
* “commercial computer software“ and “commercial computer software
* documentation“ as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995) all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*/
// This sample needs at least CUDA 5.5 and a GPU that has at least Compute Capability 2.0
// This sample demonstrates a simple image processing pipeline.
// First a JPEG file is huffman decoded and inverse DCT transformed and dequantized.
// Then the different planes are resized. Finally the resized image is quantized forward
// DCT transformed and huffman encoded.
#include “cuda_functions.h“
#include
#include
#include
#include “Endianess.h“
#include
#include
#include
#include
#include
#include
using namespace std;
struct frameHeader
{
unsigned char nSamplePrecision;
unsigned short nHeight;
unsigned short nWidth;
unsigned char nComponents;
unsigned char aComponentIdentifier[3];
unsigned char aSamplingFactors[3];
unsigned char aQuantizationTableSelector[3];
};
struct ScanHeader
{
unsigned char nComponents;
unsigned char aComponentSelector[3];
unsigned char aHuffmanTablesSelector[3];
unsigned char nSs;
unsigned char nSe;
unsigned char nA;
};
struct QuantizationTable
{
unsigned char nPrecisionAndIdentifier;
unsigned char aTable[64];
};
struct HuffmanTable
{
unsigned char nClassAndIdentifier;
unsigned char aCodes[16];
unsigned char aTable[256];
};
int DivUp(int x int d)
{
return (x + d - 1) / d;
}
template
void writeAndAdvance(unsigned char *&p
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2032 2016-11-01 07:39 jpegNPP编码\Endianess.h
文件 5189 2017-08-08 15:17 jpegNPP编码\RGB2YUV.cu
文件 639 2017-08-08 15:19 jpegNPP编码\cuda_functions.h
文件 20207 2017-08-08 15:18 jpegNPP编码\jpegNPP.cpp
目录 0 2017-08-08 15:17 jpegNPP编码\
相关资源
- cudnn 7.3.1
- opencv420_cuda_dnn编译_缓存文件.zip
- nccl_2.4.8-1+cuda10.0_x86_64.txz
- cudnn-10.2-windows10-x64-v7.6.5.32.zip
- libcudnn.so.6
- cudnn-10.2-windows10-x64-v7.6.5.32.7z
- opencv420_cuda_dnn编译_install文件.zip
- cudnn7.5for cuda 10 win10
- cuDnn-win10-Cuda10.0(亲测)
- cudnn7.0 for win64 and cuda9.0
- cudnn-10.0-windows10-x64-v7.4.1.5
- cuDNN v7.1.32018年4月17日,用于CUDA 9.0
- cudnn7.6.5 cuda 10 dll
- cusolver64_100.dll,cusparse64_100.dll
- 支持CUDA10的tensorflow-gpu轮子
- CUDA并行程序设计 GPU编程指南 高清扫
- CUDA C 编程权威指南
- cuda_9.0.176.2补丁就是他.zip
- CUDA C编程权威指南 (完整版).pdf
- GPU编程与优化 大众高性能计算(高清
- cuDNN7.1 Win10 搭配 CUDA9.0 Nvidia
- libcudnn7_7.0.5.13-1+cuda9.0_arm64.deb
- cuda toolkit 工具包 3.1 win7 64版
- libcudnn7-dev_7.0.5.13-1+cuda9.0_arm64.deb
- OpenCV4.0 cmake后生成的库文件,包含c
- cuda_9.0.176_windows.txt
- cuda地址.txt
- 利用cuda加速卷积神经网络,用于人工
- cuda9.0 for win10
- cuda.txt
评论
共有 条评论