资源简介
吴恩达老师的深度学习课程的第二部分——改善深层神经网络的课后作业,三周作业(包括课后的quiz和编程作业)都在里面,是搬运别人的资源,自己做了,感觉很不错。当时找资源时,各种痛苦,也受到了好心人的帮助,没有恶意抬高资源分数且内容全面。希望大家学习快乐~~
代码片段和文件信息
import numpy as np
def sigmoid(x):
“““
Compute the sigmoid of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- sigmoid(x)
“““
s = 1/(1+np.exp(-x))
return s
def relu(x):
“““
Compute the relu of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- relu(x)
“““
s = np.maximum(0x)
return s
def dictionary_to_vector(parameters):
“““
Roll all our parameters dictionary into a single vector satisfying our specific required shape.
“““
keys = []
count = 0
for key in [“W1“ “b1“ “W2“ “b2“ “W3“ “b3“]:
# flatten parameter
new_vector = np.reshape(parameters[key] (-11))
keys = keys + [key]*new_vector.shape[0]
if count == 0:
theta = new_vector
else:
theta = np.concatenate((theta new_vector) axis=0)
count = count + 1
return theta keys
def vector_to_dictionary(theta):
“““
Unroll all our parameters dictionary from a single vector satisfying our specific required shape.
“““
parameters = {}
parameters[“W1“] = theta[:20].reshape((54))
parameters[“b1“] = theta[20:25].reshape((51))
parameters[“W2“] = theta[25:40].reshape((35))
parameters[“b2“] = theta[40:43].reshape((31))
parameters[“W3“] = theta[43:46].reshape((13))
parameters[“b3“] = theta[46:47].reshape((11))
return parameters
def gradients_to_vector(gradients):
“““
Roll all our gradients dictionary into a single vector satisfying our specific required shape.
“““
count = 0
for key in [“dW1“ “db1“ “dW2“ “db2“ “dW3“ “db3“]:
# flatten parameter
new_vector = np.reshape(gradients[key] (-11))
if count == 0:
theta = new_vector
else:
theta = np.concatenate((theta new_vector) axis=0)
count = count + 1
return theta
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
....... 9193 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Practical-aspects-of-Deep-Learning.ipynb
文件 28519 2018-07-24 11:29 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\.ipynb_checkpoints\Gradient+Checking-checkpoint.ipynb
....... 1970 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\gc_utils.py
文件 28397 2018-07-24 11:47 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\Gradient+Checking.ipynb
....... 177586 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\images\1Dgrad_kiank.png
....... 124698 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\images\dictionary_to_vector.png
....... 1755459 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\images\handbackward_kiank.png
....... 2246535 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\images\handforward_kiank.png
....... 180602 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\images\NDgrad_kiank.png
....... 521 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\testCases.py
文件 2280 2018-07-24 11:27 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\__pycache__\gc_utils.cpython-36.pyc
文件 708 2018-07-24 11:27 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Gradient Checking\__pycache__\testCases.cpython-36.pyc
文件 256273 2018-07-24 11:27 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Initialization\.ipynb_checkpoints\Initialization-checkpoint.ipynb
文件 256273 2018-07-24 11:27 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Initialization\Initialization.ipynb
文件 7711 2018-07-24 10:39 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Initialization\init_utils.py
文件 7232 2018-07-24 10:40 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Initialization\__pycache__\init_utils.cpython-36.pyc
文件 236268 2018-07-24 10:50 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\.ipynb_checkpoints\Regularization-checkpoint.ipynb
....... 6038 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\datasets\data.mat
....... 616958 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\datasets\test_catvnoncat.h5
....... 2572022 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\datasets\train_catvnoncat.h5
....... 1714401 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\images\dropout1_kiank.mp4
....... 2461616 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\images\dropout2_kiank.mp4
....... 123636 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\images\field_kiank.png
文件 267447 2018-07-24 14:54 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\Regularization.ipynb
文件 10755 2018-07-24 10:57 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\reg_utils.py
....... 4370 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\testCases.py
文件 9800 2018-07-24 10:57 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\__pycache__\reg_utils.cpython-36.pyc
文件 3976 2018-07-24 10:48 02-Improving-Deep-Neural-Networks\week1\Programming-Assignments\Regularization\__pycache__\testCases.cpython-36.pyc
....... 146556 2017-08-28 03:55 02-Improving-Deep-Neural-Networks\week1\quiz.pdf
文件 6993 2018-07-25 18:58 02-Improving-Deep-Neural-Networks\week2\.ipynb_checkpoints\optimization-algoritihms-checkpoint.ipynb
............此处省略63个文件信息
相关资源
- AI圣经pdf高清
- tensorFlow keras 深度学习 人工智能实践
- 《动手学深度学习》(Dive into Deep L
- Ian Goodfellow等人的Deep Learning 英文版含
- 吴恩达深度学习课程作业网易云上有
- word2vec词向量训练及中文文本相似度计
- LabelImg 图像标注工具 深度学习必备工
- 深度学习 AI圣经 deep learning-张志华-
- coursera机器学习吴恩达编程作业答案全
- 深度学习相关资料
- 网易云吴恩达深度学习工程师微专业
- 深度学习基础(FundamentalsofDeepLearnin
- 《深度学习之TensorFlow:入门、原理与
- AI圣经深度学习.rar
- 《生成式深度学习》Generative Deep Lea
- coursera吴恩达机器学习第一到第六周
- 深度学习 花书
- 深度学习中文-花书-无水印版
- sEMG基于肌电信号的深度学习数据集
- 深度学习课程_吴恩达PPT汇总
- 机器学习入门:Softmax
- 深度学习花书高清中文版和英文原版
- 瑕疵检测数据集
- 深度学习:21天实战Caffe 高清完整版
- 强化学习精要 核心算法与TensorFlow实现
- 吴恩达deeplearning课程作业及需要的的
- 机器学习,概率模型和深度学习的讲
- 《Tensorflow:实战Google深度学习框架》
- 基于深度学习的图像去雨
- tensorflow深度学习三部曲.rar
评论
共有 条评论