资源简介
学习笔记之——基于pytorch的FSRCNN
把我的代码上传了,后续有更正会更新这个代码
代码片段和文件信息
import sys
import time
TOTAL_BAR_LENGTH = 80
LAST_T = time.time()
BEGIN_T = LAST_T
def progress_bar(current total msg=None):
global LAST_T BEGIN_T
if current == 0:
BEGIN_T = time.time() # Reset for new bar.
current_len = int(TOTAL_BAR_LENGTH * (current + 1) / total)
rest_len = int(TOTAL_BAR_LENGTH - current_len) - 1
sys.stdout.write(‘ %d/%d‘ % (current + 1 total))
sys.stdout.write(‘ [‘)
for i in range(current_len):
sys.stdout.write(‘=‘)
sys.stdout.write(‘>‘)
for i in range(rest_len):
sys.stdout.write(‘.‘)
sys.stdout.write(‘]‘)
current_time = time.time()
step_time = current_time - LAST_T
LAST_T = current_time
total_time = current_time - BEGIN_T
time_used = ‘ Step: %s‘ % format_time(step_time)
time_used += ‘ | Tot: %s‘ % format_time(total_time)
if msg:
time_used += ‘ | ‘ + msg
msg = time_used
sys.stdout.write(msg)
if current < total - 1:
sys.stdout.write(‘\r‘)
else:
sys.stdout.write(‘\n‘)
sys.stdout.flush()
# return the formatted time
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
seconds_final = int(seconds)
seconds = seconds - seconds_final
millis = int(seconds*1000)
output = ‘‘
time_index = 1
if days > 0:
output += str(days) + ‘D‘
time_index += 1
if hours > 0 and time_index <= 2:
output += str(hours) + ‘h‘
time_index += 1
if minutes > 0 and time_index <= 2:
output += str(minutes) + ‘m‘
time_index += 1
if seconds_final > 0 and time_index <= 2:
output += str(seconds_final) + ‘s‘
time_index += 1
if millis > 0 and time_index <= 2:
output += str(millis) + ‘ms‘
time_index += 1
if output == ‘‘:
output = ‘0ms‘
return output
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-10-24 12:57 project\
目录 0 2018-10-24 13:06 project\.idea\
文件 7 2018-10-24 13:04 project\.idea\.name
目录 0 2018-10-24 12:54 project\.idea\inspectionProfiles\
文件 1112 2018-10-24 12:54 project\.idea\inspectionProfiles\Project_Default.xm
文件 307 2018-10-23 22:26 project\.idea\misc.xm
文件 301 2018-10-24 13:06 project\.idea\modules.xm
文件 567 2018-10-22 23:37 project\.idea\project.iml
文件 22058 2018-10-24 13:06 project\.idea\workspace.xm
目录 0 2018-10-24 13:01 project\.vs\
文件 37 2018-10-24 13:01 project\.vs\ProjectSettings.json
文件 78 2018-10-24 13:01 project\.vs\VSWorkspaceState.json
目录 0 2018-10-23 23:05 project\.vs\pyLearnTF\
目录 0 2018-10-23 23:05 project\.vs\pyLearnTF\v15\
文件 18944 2018-10-24 13:01 project\.vs\pyLearnTF\v15\.suo
文件 208896 2018-10-24 13:01 project\.vs\slnx.sqlite
目录 0 2018-10-24 13:00 project\FSRCNN\
目录 0 2018-10-24 13:01 project\FSRCNN\__pycache__\
文件 2016 2018-10-23 23:06 project\FSRCNN\__pycache__\model.cpython-36.pyc
文件 4545 2018-10-24 13:01 project\FSRCNN\__pycache__\solver.cpython-36.pyc
文件 3120 2018-10-23 22:26 project\FSRCNN\model.py
文件 8454 2018-10-24 13:00 project\FSRCNN\solver.py
目录 0 2018-10-24 12:59 project\__pycache__\
文件 1508 2018-10-23 23:06 project\__pycache__\misc.cpython-36.pyc
文件 1075 2018-10-24 12:59 project\__pycache__\visual_loss.cpython-36.pyc
目录 0 2018-10-23 23:04 project\dataset\
目录 0 2018-10-23 23:04 project\dataset\Test\
目录 0 2018-10-23 23:04 project\dataset\Test\Set5\
文件 786486 2018-10-23 19:59 project\dataset\Test\Set5\baby_GT.bmp
文件 248886 2018-10-23 19:59 project\dataset\Test\Set5\bird_GT.bmp
文件 196730 2018-10-23 19:59 project\dataset\Test\Set5\butterfly_GT.bmp
............此处省略542个文件信息
- 上一篇:南京理工大学计算机网络课件
- 下一篇:礼券自助提货系统源码
相关资源
- 《动手学深度学习》(Dive into Deep L
- 单图像去雾算法AOD-Net实现
- UNet(UNet网络的三个实现:大同小异
- 深度学习入门之PyTorch.廖星宇.zip
- 深度学习入门之PyTorch-廖星宇高清pd
- 深度学习入门之PyTorch.廖星宇.pdf
- 深度学习框架PyTorch入门与实践高清扫
- 深度学习入门之Pytorch带书签和源码
- torch-1.1.0a0+862aff6-cp36-cp36m-linux_aarch64
- pytorchbook.zip
- torch-1.6.0-cp36-cp36m-linux_aarch64.whl
- YOLO v3目标检测算法的PyTorch实现压缩包
- torch-1.1.0-cp36-cp36m-win_amd64.rar
- 深度学习框架PyTorch:入门与实践_陈云
- pytorch-resnet18和resnet50官方预训练模型
- CVPR2019论文BDCN的Pytorch代码
- torch-1.3.0+cpu-cp37-cp37m-win_amd64.whl
- 深度学习框架PyTorch:入门与实践.陈云
- 深度学习之PyTorch实战计算机视觉-唐进
- 深度学习框架PyTorch:入门与实践.陈云
- Deep Learning with PyTorch中文版前5章
- 25本Deep Learning英文PDF电子书清晰无水
- 深度学习入门之Pytorch高清版
- CSRNet-pytorch.zip
- 深度学习入门之PyTorch.廖星宇(带详细
- 图像分类残差网络-pytorch实现
- Natural Language Processing with PyTorch 2018
- torchtext.zip
- MDNet代码及注释(pytorch版)
- pytorch-1.1.0-py3.6_cuda90_cudnn7_1.tar.bz2
评论
共有 条评论