资源简介
吴恩达老师深度学习第一课神经网络与深度学习所有作业
代码片段和文件信息
# coding: utf-8
# # Python Basics with Numpy (optional assignment)
#
# Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you‘ve used Python before this will help familiarize you with functions we‘ll need.
#
# **Instructions:**
# - You will be using Python 3.
# - Avoid using for-loops and while-loops unless you are explicitly told to do so.
# - Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would not be graded if you change this. Each cell containing that comment should only contain one function.
# - After coding your function run the cell right below it to check if your result is correct.
#
# **After this assignment you will:**
# - Be able to use iPython Notebooks
# - Be able to use numpy functions and numpy matrix/vector operations
# - Understand the concept of “broadcasting“
# - Be able to vectorize code
#
# Let‘s get started!
# ## About iPython Notebooks ##
#
# iPython Notebooks are interactive coding environments embedded in a webpage. You will be using iPython notebooks in this class. You only need to write code between the ### START CODE HERE ### and ### END CODE HERE ### comments. After writing your code you can run the cell by either pressing “SHIFT“+“ENTER“ or by clicking on “Run Cell“ (denoted by a play symbol) in the upper bar of the notebook.
#
# We will often specify “(≈ X lines of code)“ in the comments to tell you about how much code you need to write. It is just a rough estimate so don‘t feel bad if your code is longer or shorter.
#
# **Exercise**: Set test to ‘“Hello World“‘ in the cell below to print “Hello World“ and run the two cells below.
# In[1]:
### START CODE HERE ### (≈ 1 line of code)
test = “Hello World“
### END CODE HERE ###
# In[2]:
print (“test: “ + test)
# **Expected output**:
# test: Hello World
#
# **What you need to remember**:
# - Run your cells using SHIFT+ENTER (or “Run cell“)
# - Write code in the designated areas using Python 3 only
# - Do not modify the code outside of the designated areas
# ## 1 - Building basic functions with numpy ##
#
# Numpy is the main package for scientific computing in Python. It is maintained by a large community (www.numpy.org). In this exercise you will learn several key numpy functions such as np.exp np.log and np.reshape. You will need to know how to use these functions for future assignments.
#
# ### 1.1 - sigmoid function np.exp() ###
#
# Before using np.exp() you will use math.exp() to implement the sigmoid function. You will then see why np.exp() is preferable to math.exp().
#
# **Exercise**: Build a function that returns the sigmoid of a real number x. Use math.exp(x) for the exponential function.
#
# **Reminder**:
# $sigmoid(x) = \frac{1}{1+e^{-x}}$ is sometimes also known as the logistic function. It is a non-linear function used not only in Machine Learning (Logistic Regression) but also in Deep Learning.
#
# To refer to a
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-02-07 16:49 assignment2\
文件 6148 2017-09-02 22:34 assignment2\.DS_Store
目录 0 2017-09-02 17:32 assignment2\images\
文件 339673 2017-09-02 17:32 assignment2\images\la_defense.jpg
文件 310181 2017-09-02 17:31 assignment2\images\gargouille.jpg
文件 636273 2017-09-02 17:32 assignment2\images\my_image.jpg
文件 94439 2017-09-02 17:32 assignment2\images\my_image2.jpg
文件 601084 2017-09-02 17:31 assignment2\images\cat_in_iran.jpg
文件 191592 2017-09-02 17:32 assignment2\images\LogReg_kiank.png
文件 265708 2017-09-02 17:32 assignment2\images\image1.png
文件 154439 2017-09-02 17:32 assignment2\images\image2.png
文件 29190 2018-02-07 14:55 assignment2\assignment2_2.py
目录 0 2017-11-21 20:33 assignment2\datasets\
文件 616958 2017-09-02 17:29 assignment2\datasets\test_catvnoncat.h5
文件 2572022 2017-09-02 17:30 assignment2\datasets\train_catvnoncat.h5
目录 0 2017-11-21 20:33 assignment2\__pycache__\
文件 811 2017-10-14 14:52 assignment2\__pycache__\lr_utils.cpython-36.pyc
文件 310988 2018-02-07 16:49 assignment2\assignment2_2.ipynb
文件 23283 2018-02-07 15:11 assignment2\assignment2_1.py
目录 0 2017-11-21 20:33 assignment2\.ipynb_checkpoints\
文件 133637 2018-02-07 16:29 assignment2\.ipynb_checkpoints\assignment2_2-checkpoint.ipynb
文件 40880 2017-10-14 11:03 assignment2\.ipynb_checkpoints\assignment2_1-checkpoint.ipynb
文件 41373 2018-02-07 14:59 assignment2\assignment2_1.ipynb
文件 880 2017-09-02 17:30 assignment2\lr_utils.py
目录 0 2017-11-22 22:19 assignment3\
文件 6148 2017-09-02 17:39 assignment3\.DS_Store
目录 0 2017-09-02 17:36 assignment3\images\
文件 681895 2017-09-02 17:35 assignment3\images\grad_summary.png
文件 139115 2017-09-02 17:35 assignment3\images\classification_kiank.png
文件 41671 2017-09-02 17:35 assignment3\images\sgd.gif
文件 64014 2017-09-02 17:35 assignment3\images\sgd_bad.gif
............此处省略72个文件信息
- 上一篇:数理逻辑课件
- 下一篇:BS SSH框架详解包括代码有解释
相关资源
- 深度学习 AI圣经 中文高清版 带完整目
- Coursera课程Deeplearning深度学习笔记+课
- 深度学习打标软件.rar
- 用于视频的目标检测
- 深度学习-21天实战caffe高清.pdf版
- 基于深度学习的计算机视觉.pdf
- 语音识别 论文合集
- caffe验证码识别数据集及模型
- 深度学习(花书)代码和笔记
- 一天搞懂深度学习.
- Tensorflow 实战Google深度学习框架 源码
- 深度学习降水预测交流+新方向探索
- 吴恩达机器学习大作业完成版!
- 动手学深度学习中文电子版
- 阿里天池FashionAI服装属性标签图像识
- 深度学习入门的经典论文翻译7篇英文
- 深度学习PDF非扫描版(中文版)麻省
- CS231n课程笔记翻译 全 带书签 PDF
- 深度学习博硕论文合集1
- 深度学习 21天实战Caffe.pdf 高清完整版
- 大数据架构详解:从数据获取到深度
- 矩阵分析与应用(第二版) 张贤达著
- 深度学习 21天实战Caffe.pdf (赵永科著
- 深度学习中文版-Deep+Learning-Yoshua+Ben
- yoloV4自己的数据集.zip
- mnist手写字符集0-9jpg图片
- 吴恩达机器学习编程解答自己做的,
- Coursera吴恩达机器学习课程PPT合集纯净
- 斯坦福大学吴恩达机器学习课程(学
- 《深度学习》.rar
评论
共有 条评论