资源简介
machine-learning-ex1 到machine-learning-ex8 里面作业部分已经完成并且有相应的注释
代码片段和文件信息
function J = computeCost(X y theta)
%线性回归算法
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X y theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
h = X*theta - y; %X*theta 为Hypothesis
J = 1/(2*m) * sum(h.^2);%Cost Function
% =========================================================================
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-07-17 23:02 machine-learning-ex1\
目录 0 2017-03-20 13:48 machine-learning-ex1\machine-learning-ex1\
目录 0 2018-07-27 15:21 machine-learning-ex1\machine-learning-ex1\ex1\
文件 721 2018-07-27 10:43 machine-learning-ex1\machine-learning-ex1\ex1\computeCost.m
文件 698 2018-07-27 15:21 machine-learning-ex1\machine-learning-ex1\ex1\computeCostMulti.m
文件 4607 2018-07-27 13:52 machine-learning-ex1\machine-learning-ex1\ex1\ex1.m
文件 4710 2018-07-27 10:08 machine-learning-ex1\machine-learning-ex1\ex1\ex1_multi.m
文件 1359 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\ex1data1.txt
文件 657 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\ex1data2.txt
文件 1380 2018-07-27 15:21 machine-learning-ex1\machine-learning-ex1\ex1\featureNormalize.m
文件 1402 2018-07-27 10:42 machine-learning-ex1\machine-learning-ex1\ex1\gradientDescent.m
文件 1087 2018-07-27 10:13 machine-learning-ex1\machine-learning-ex1\ex1\gradientDescentMulti.m
目录 0 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\
目录 0 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\
文件 1624 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\AUTHORS.txt
文件 3862 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\ChangeLog.txt
文件 1551 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\LICENSE_BSD.txt
文件 19369 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\README.txt
文件 881 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\jsonopt.m
文件 18732 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\loadjson.m
文件 15574 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\loadubjson.m
文件 771 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\mergestruct.m
文件 17462 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\savejson.m
文件 16123 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\saveubjson.m
文件 1094 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\varargin2struct.m
文件 1195 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\makeValidFieldName.m
文件 5562 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\submitWithConfiguration.m
文件 774 2018-07-27 15:21 machine-learning-ex1\machine-learning-ex1\ex1\normalEqn.m
文件 1089 2018-07-27 10:42 machine-learning-ex1\machine-learning-ex1\ex1\plotData.m
文件 1876 2017-03-14 09:40 machine-learning-ex1\machine-learning-ex1\ex1\submit.m
文件 258 2018-07-27 10:14 machine-learning-ex1\machine-learning-ex1\ex1\token.mat
............此处省略254个文件信息
相关资源
- CUDA 高性能并行计算.pdf
- 机器学习原理与应用入门
- 风控建模教程
- Hands-On Machine Learning with Scikit-Learn an
- 于剑-机器学习每章重点
- 刘焱-web安全与机器学习三本书打包
- 《机器学习实用案例解析》
- 视觉机器学习20讲(源代码)
- 机器学习及其应用
- Scala Machine Learning ProjectsScala机器学习
- 机器学习与优化
- 机器学习与优化_2018
- HOG+SVM的行人图片和视频检测码源及所
- 机器学习课件
- 贝叶斯方法 概率编程与贝叶斯推断
- 李航-统计学方法-书签-目录
- 机器学习中的特征工程FeatureEngineeri
- 数字0到9和英文大小写字母手写识别训
-
multi-ob
jective machine learning.pdf - 《贝叶斯数据分析(英文导读版·原书
- Handwritten_digit_recognition.zip
- Horn R A Johnson C R Matrix Analysis (CUP 19
- Hands-On Machine Learning with Scikit-Learn Ke
- The Nature of Statistical Learning Theory - Va
- 回归方法和机器学习方法以及R代码实
- Time series analysis forecasting and control 5
- Deep Learning medical image analysis英文高清
- PRML中文版_模式识别与机器学习.pdf
- 概率统计超入门
- arff数据集全集weka机器学习必备
评论
共有 条评论