资源简介
独立成分分析:比FastICA可能更好的一种算法RobustICA

代码片段和文件信息
% RobustICA algorithm for independent component analysis (Release 1 - March 31 2008)
% -----------------------------------------------------------------------------------
%
% RobustICA is based on the normalized kurtosis contrast function which is optimized by a
% computationally efficient gradient-descent technique. This technique computes algebraically
% the step size (adaption coefficient) globally optimizing the contrast in the search direction
% at each iteration. Any independent component with non-zero kurtosis can be extracted in this
% manner.
%
% The present implementation performs the deflationary separation of statistically independent
% sources under the instantaneous linear mixture model. Full separation is achieved if at most
% one source has zero kurtosis.
%
% Some advantages of RobustICA are:
%
% - The optimal step-size technique provides some robustness to the presence of saddle points and
% spurious local extrema in the contrast function.
%
% - The method shows a very high convergence speed measured in terms of source extraction quality
% versus number of operations.
%
% - Real- and complex-valued signals are treated by exactly the same algorithm. Both type of source
% signals can be present simultaneously in a given mixture. Complex sources need not be circular.
% The mixing matrix coefficients may be real or complex regardless of the source type.
%
% - Sequential extraction (deflation) can be performed via linear regression. As a result prewhitening
% and the performance limitations it imposes can be avoided. This feature may prove especially
% beneficial in ill-conditioned scenarios the convolutive case and underdetermined mixtures.
%
% - Optionally the algorithm can target sub-Gaussian or super-Gaussian sources in the order defined
% by a kurtosis-sign vector provided by the user.
%
%
% The package is composed of the following M-files:
%
% - ‘robustica.m‘: implements the algorithm itself.
%
% - ‘kurt_gradient_optstep.m‘: computes the optimal step-size of the normalized kurtosis contrast
% using the gradient vector as search direction.
%
% - ‘deflation_regression.m‘: performs deflation via linear regression.
%
% - ‘robustica_demo.m‘: a simple demonstration illustrating the performance of RobustICA
% on synthetic mixtures.
%
%
% More details about the RobustICA algorithm can be found in the references below:
%
% - V. Zarzoso and P. Comon “Comparative Speed Analysis of FastICA“
% in: Proceedings ICA-2007 7th International Conference on Independent Component Analysis
% and Signal Separation London UK September 9-12 200
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6909 2008-03-29 10:47 robustica_demo.m
文件 3944 2008-03-31 14:46 contents.m
文件 1827 2008-03-31 12:42 deflation_regression.m
文件 5738 2008-03-31 12:51 kurt_gradient_optstep.m
文件 8748 2008-03-31 12:48 robustica.m
相关资源
- AsyncTask文件控制暂停和继续,在状态
- Navicat Premium 15汉化包.zip55438
- Wolfram Mathematica 矩阵初等变换函数(
- Reparatory Effects of Nicotine on NMDA Recepto
- Fabrication and all-optical poling characteris
- KICA的详细代码,包附高斯核,多项式
- 经典的Viterbi算法
- Studies In Vitro and In Vivo of Pharmacologica
- Research on pharmacological effects of lycorin
- HslCommunication 7.0.1 免费版本 免费使用
- Navicat Keygen Patch v5.6.0 DFoX
- 翻译的美国大学经典参考书,Roland
- MT6771T_LTE-A_Smartphone_Application_Processor
- RapidIO 2.2 Specification
- RapidIO_Rev_2.2_Specification
- Indentification of Interface Blocker to the LA
- Bandicam注册机
- bandicam 4.2.1.1454
- Navicat V11全系列注册机
- Electricity and hydrogen co-production from me
- Polarization Optics in Telecommunication
- Numerical simulation and prediction of radio f
- Investigation of the Lower Resistance Meridian
- Investigation of the Lower Resistance Meridian
- 西班牙Telefonica电信公司采用Sun数据仓
- 中文版AutoCAD_Mechanical_2010_官方教程-
- PCI Express SFF-8639 Module Specification
- Anomalous optical forces on radially anisotrop
- New Analytical Solution of a Generalized Negat
- A Globally Convergent and Closed Analytical So
评论
共有 条评论