资源简介
亲测好用 基于Tensorflow用CNN(卷积神经网络)处理kdd99数据集,代码包括预处理代码和分类代码,准确率99.6%以上,并且快速收敛至最优值。
(Based on Tensorflow (convolutional neural network) processing KDD99 data set based on CNN, the code includes preprocessing code and classification code, the accuracy rate is more than 99.6%, and quickly converge to the optimal value.)
(Based on Tensorflow (convolutional neural network) processing KDD99 data set based on CNN, the code includes preprocessing code and classification code, the accuracy rate is more than 99.6%, and quickly converge to the optimal value.)
代码片段和文件信息
#/usr/bin/python2.7
#coding:utf-8
from __future__ import print_function
import tensorflow as tf
import randomcsv
def next_batch(feature_listlabel_listsize):
feature_batch_temp=[]
label_batch_temp=[]
f_list = random.sample(range(len(feature_list)) size)
for i in f_list:
feature_batch_temp.append(feature_list[i])
for i in f_list:
label_batch_temp.append(label_list[i])
return feature_batch_templabel_batch_temp
def weight_variable(shapelayer_name):
#定义一个shape形状的weights张量
with tf.name_scope(layer_name + ‘_Weights‘):
Weights = tf.Variable(tf.truncated_normal(shape stddev=0.1)name=‘W‘)
tf.histogram_summary(layer_name + ‘_Weights‘ Weights)
return Weights
def bias_variable(shapelayer_name):
#定义一个shape形状的bias张量
with tf.name_scope(layer_name + ‘_biases‘):
biases = tf.Variable(tf.constant(0.1 shape=shape)name=‘b‘)
tf.histogram_summary(layer_name + ‘_biases‘ biases)
return biases
def conv2d(x Wlayer_name):
#卷积计算函数
# stride [1 x步长 y步长 1]
# padding:SAME/FULL/VALID(边距处理方式)
with tf.name_scope(layer_name + ‘_h_conv2d‘):
h_conv2d = tf.nn.conv2d(x W strides=[1 1 1 1] padding=‘SAME‘)
return h_conv2d
def max_pool_2x2(xlayer_name):
# max池化函数
# ksize [1 x边长 y边长1] 池化窗口大小
# stride [1 x步长 y步长 1]
# padding:SAME/FULL/VALID(边距处理方式)
with tf.name_scope(layer_name + ‘_h_pool‘):
h_pool = tf.nn.max_pool(x ksize=[1221] strides=[1221] padding=‘SAME‘)
return h_pool
def load_data():
global feature
global label
global feature_full
global label_full
feature=[]
label=[]
feature_full=[]
label_full=[]
file_path =‘/home/peter/Desktop/pycharm/ids-kdd99/kddcup.data_10_percent_corrected_handled2.cvs‘
with (open(file_path‘r‘)) as data_from:
csv_reader=csv.reader(data_from)
for i in csv_reader:
# print i
label_list=[0]*23
feature.append(i[:36])
label_list[int(i[41])]=1
label.append(label_list)
# print label
# print feature
file_path_full =‘/home/peter/Desktop/pycharm/ids-kdd99/kddcup.data.corrected_handled2.cvs‘
with (open(file_path_full‘r‘)) as data_from_full:
csv_reader_full=csv.reader(data_from_full)
for j in csv_reader_full:
# print i
label_list_full=[0]*23
feature_full.append(j[:36])
label_list_full[int(j[41])]=1
label_full.append(label_list_full)
if __name__ == ‘__main__‘:
global feature
global label
global feature_full
global label_full
# load数据
load_data()
feature_test = feature
feature_train =feature_full
label_test = label
label_test_full = label_full
# 定义用以输入的palceholder
with tf.name_scope(‘inputs‘):
xs = tf.placeholder(tf.float32 [None 36]name=‘pic_data‘) # 6x6
ys = tf.placeholder(tf.float32 [None 23]
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-06-08 20:49 ids-kdd99\
目录 0 2017-06-08 20:49 ids-kdd99\.idea\
文件 398 2016-12-27 15:54 ids-kdd99\.idea\ids-kdd99.iml
文件 682 2016-12-27 15:53 ids-kdd99\.idea\misc.xm
文件 270 2016-12-27 15:53 ids-kdd99\.idea\modules.xm
文件 42708 2016-12-29 10:01 ids-kdd99\.idea\workspace.xm
文件 6944 2016-12-29 16:58 ids-kdd99\cnn_main.py
文件 2977 2016-12-29 16:55 ids-kdd99\handle2.py
文件 18115902 2016-12-29 09:58 ids-kdd99\kddcup.data.gz
文件 2144903 2016-12-28 16:45 ids-kdd99\kddcup.data_10_percent.gz
文件 4659 2016-12-29 17:00 ids-kdd99\main.py
文件 6944 2017-02-27 15:12 ids-kdd99\mian_cnn.py
目录 0 2017-06-08 20:49 ids-kdd99\multi_logs\
文件 53246 2016-12-29 11:38 ids-kdd99\multi_logs\events.out.tfevents.1482980284.zjx-24000635
目录 0 2017-06-08 20:49 ids-kdd99\multi_logs\test\
文件 155823 2016-12-29 11:38 ids-kdd99\multi_logs\test\events.out.tfevents.1482980284.zjx-24000635
目录 0 2017-06-08 20:49 ids-kdd99\multi_logs\train\
文件 155823 2016-12-29 11:38 ids-kdd99\multi_logs\train\events.out.tfevents.1482980284.zjx-24000635
文件 328 2016-12-29 17:11 ids-kdd99\readMe.txt.txt
- 上一篇:物流管理系统全套开发).rar
- 下一篇:某集团大数据平台整体方案建议书 .docx
评论
共有 条评论