资源简介
高光谱图像和多光谱图像的融合,是关于《A Convex Formulation for Hyperspectral Image
Superresolution via Subspace-Based Regularization》中的程序,可以直接运行
代码片段和文件信息
% This is a demo file that exemplifies the use of the HySure algorithm.
% See the file README for more information.
%
% It corresponds to the example given in [1] using dataset C (Paris
% dataset) with the fusion of a simulated hyperspectral image
% with a simulated panchromatic image.
%
% This is a real dataset with images taken by two instruments on board
% the EO-1 satellite Hyperion (hyperspectral) and ALI (pan+multispectral).
% We needed the hyperspectral image to have lower resolution than the
% multispectral one and therefore we first reduced the spatial resolution
% of the hyperspectral image by blurring it with the Starck-Murtagh filter
% and downsampling as described in [1] and using a downsampling factor
% of 3. The original hyperspectral image before blurring and downsampling
% was used as ground truth.
%
% The downsampling factor and SNR are values that can be modified
% (see below).
%
% [1] M. Simoes J. Bioucas-Dias L. Almeida and J. Chanussot
% 揂 convex formulation for hyperspectral image superresolution via
% subspace-based regularization?IEEE Trans. Geosci. Remote Sens.
% to be publised.
% % % % % % % % % % % % %
%
% Version: 1
%
% Can be obtained online from: https://github.com/alfaiate/HySure
%
% % % % % % % % % % % % %
%
% Copyright (C) 2015 Miguel Simoes Jose Bioucas-Dias Luis B. Almeida
% and Jocelyn Chanussot
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation version 3 of the License.
%
% This program is distributed in the hope that it will be useful
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not see .
%
% % % % % % % % % % % % %
clear; close all;
addpath(‘../src‘ ‘../src/utils‘);
% % % % % % % % % % % % %
%
% This script has four steps.
% I. It starts by generating the observed hyperspectral images.
% The following parameters can be
% modified to change the data generation:
%
downsamp_factor = 3; % Downsampling factor
SNRh = 30; % SNR (in dB) for the hyperspectral image
%
% II. Next it estimates the spectral and spatial response of the sensors.
% The regularization parameters can be adjusted here:
lambda_R = 1e1;
lambda_B = 1e1;
% For the denoising with SVD we need to specify the number of bands we
% want to keep
p = 10; % Corresponds to variable L_s in [1]; number of endmembers in VCA /
% number of non-truncated singular vectors
%
% III. The data fusion algorithm is then called using the estimated responses
% and the observed data. The following parameters can be
% modified:
%
basis_type = ‘VCA‘;
lambda_phi = 5e-4;
lambda_m = 1e0;
%
% IV. In the end three quality i
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
....... 5749 2015-10-13 08:39 HySure-master\data\ikonos_spec_resp.mat
....... 31432397 2015-10-13 08:39 HySure-master\data\original_rosis.mat
....... 2899131 2015-10-13 08:39 HySure-master\data\paris_data_hs_ms.mat
....... 2362945 2015-10-13 08:39 HySure-master\data\paris_data_hs_pan.mat
....... 12341842 2015-10-13 08:39 HySure-master\data\rosis_small_Datacube.mat
....... 9048 2015-10-13 08:39 HySure-master\demos\demo_paris_hs_ms.m
....... 6156 2015-10-13 08:39 HySure-master\demos\demo_paris_hs_pan.m
....... 9187 2015-10-13 08:39 HySure-master\demos\demo_pavia_hs_ms.m
....... 9108 2015-10-13 08:39 HySure-master\demos\demo_pavia_hs_pan.m
....... 35147 2015-10-13 08:39 HySure-master\LICENSE.txt
....... 2856 2015-10-13 08:39 HySure-master\README.md
....... 7904 2015-10-13 08:39 HySure-master\src\data_fusion.m
....... 12277 2015-10-13 08:39 HySure-master\src\sen_resp_est.m
....... 298 2015-10-13 08:39 HySure-master\src\utils\ConvC.m
....... 334 2015-10-13 08:39 HySure-master\src\utils\downsamp_HS.m
....... 117 2015-10-13 08:39 HySure-master\src\utils\im2mat.m
....... 4063 2015-10-13 08:39 HySure-master\src\utils\img_qi.m
....... 128 2015-10-13 08:39 HySure-master\src\utils\mat2im.m
....... 2780 2015-10-13 08:39 HySure-master\src\utils\quality_assessment.m
....... 424 2015-10-13 08:39 HySure-master\src\utils\upsamp_HS.m
....... 7791 2015-10-13 08:39 HySure-master\src\utils\VCA.m
....... 220 2015-10-13 08:39 HySure-master\src\utils\vector_soft_col_iso.m
目录 0 2015-10-13 08:39 HySure-master\src\utils
目录 0 2015-10-13 08:39 HySure-master\data
目录 0 2015-10-13 08:39 HySure-master\demos
目录 0 2015-10-13 08:39 HySure-master\src
目录 0 2015-10-13 08:39 HySure-master
----------- --------- ---------- ----- ----
49149902 27
............此处省略0个文件信息
相关资源
- 图像处理图像库数据集
- 中科院刘定生老师图像处理课件与视
- 数字图像处理图片素材库
- 图形图像界的传世经典!Graphic.Gems.
- 数字图像处理与分析_11686738.pdf
- 信号检测与估计理论与应用 [美托马斯
- 学习图像处理最常用的图片很齐全很
- 数字图像处理第二版课件——陈天华
- Fiji使用手册
- Computer Vision with OpenCV3 and Qt5完整版
- Bmp图像反色处理
- libvips 一种低内存需求的快速图像处理
- 图像处理chart图
- FPGA 图像处理
- 数字图像处理第三版英文版冈萨雷斯
- 数字图像处理软件
- Opencv+VS米粒图像处理实验源代码
- 数字图像处理教案
- 数字图像处理冈萨雷斯)+图片+代码
- 冈萨雷斯的数字图像处理第四版 全球
- 自适应滤波第五版及答案Adaptive Filt
- C.net编程与实践图像处理Pdf加随书光盘
- 生成对抗网络GAN代码+数据集
- 冈萨雷斯《数字图像处理》Digital Im
- 计算机视觉特征提取与图像处理(第
- CSharp数字图像处理算法典型
- 数字图像处理第二版.pdf
- 数字图像处理课件
- 文档图像处理工具GdPicture.NET Ultimate
- 数字图像处理K.R.Castleman)中文清晰版
评论
共有 条评论