资源简介
Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
代码片段和文件信息
- 上一篇:基于VHDL的密码锁程序
- 下一篇:组合数学曹汝成课后习题答案+课件
相关资源
- ST_Geometry及使用大全.pdf
- 信息几何-Information Geometry
- Algebraic Geometry 1 Schemes
- Statistical Inference习题答案
- Fundamentals of Statistical Signal ProcessingV
- Differential Geometry Connections Curvature an
- An Introduction to Statistical Learning 中英文
- Handbook of Discrete and Computational Geometr
- Statistical Inference 2nd edition275476
- The elements of statistical Learning 书与答案
- Theory of Financial Risk - From Statistical Ph
- Applied Multivariate Statistical Analysis 第六
- 实用多元统计分析 Applied Multivariate
- Statistical Modeling by Wavelets
- Fundamental-Statistical-Inference-A-Computatio
- Statistical Learning Theory - Vapnik - 1998 高
- Biostatistical_Analysis_5thJ._H._Zar.pdf
- Gear_Geometry_and_Applied_Theory(2004)
- algebraic graph theory
- Statistical Digital Signal Processing and Mode
- 统计学习导论-基于R应用书+思维导图
- The Elements of Statistical Learning 2nd 带书签
- Algebraic Topology [hatcher].
- The Elements of Statistical Learning Springer
- 统计学习(the element of statistical lear
- Fundamentals of Statistical Signal Processing
- The Elements of Statistical Learning(2nd)详
- Probability and Statistical Inference NINTH ED
- 完整版ESL英文版+中文版+答案 The Ele
- Multiple View Geometry in Computer Vision PDF 中
评论
共有 条评论