资源简介
开源计算机视觉库,可以实现许多图像处理的算法
代码片段和文件信息
function phow_caltech101()
% PHOW_CALTECH101 Image classification in the Caltech-101 dataset
% This program demonstrates how to use VLFeat to construct an image
% classifier on the Caltech-101 data. The classifier uses PHOW
% features (dense SIFT) spatial histograms of visual words and a
% Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT
% kd-trees and homogeneous kernel map. The program also
% demonstrates VLFeat PEGASOS SVM solver although for this small
% dataset other solvers such as LIBLINEAR can be more efficient.
%
% By default 15 training images are used which should result in
% about 64% performance (a good performance considering that only a
% single feature type is being used).
%
% Call PHOW_CALTECH101 to train and test a classifier on a small
% subset of the Caltech-101 data. Note that the program
% automatically downloads a copy of the Caltech-101 data from the
% Internet if it cannot find a local copy.
%
% Edit the PHOW_CALTECH101 file to change the program configuration.
%
% To run on the entire dataset change CONF.TINYPROBLEM to FALSE.
%
% The Caltech-101 data is saved into CONF.CALDIR which defaults to
% ‘data/caltech-101‘. Change this path to the desired location for
% instance to point to an existing copy of the Caltech-101 data.
%
% The program can also be used to train a model on custom data by
% pointing CONF.CALDIR to it. Just create a subdirectory for each
% class and put the training images there. Make sure to adjust
% CONF.NUMTRAIN accordingly.
%
% Intermediate files are stored in the directory CONF.DATADIR. All
% such files begin with the prefix CONF.PREFIX which can be changed
% to test different parameter settings without overriding previous
% results.
%
% The program saves the trained model in
% /-model.mat. This model can be used to
% test novel images independently of the Caltech data.
%
% load(‘data/baseline-model.mat‘) ; # change to the model path
% label = model.classify(model im) ;
%
% Author: Andrea Vedaldi
% Copyright (C) 2011-2013 Andrea Vedaldi
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
conf.calDir = ‘data/caltech-101‘ ;
conf.dataDir = ‘data/‘ ;
conf.autoDownloadData = true ;
conf.numTrain = 15 ;
conf.numTest = 15 ;
conf.numClasses = 102 ;
conf.numWords = 600 ;
conf.numSpatialX = [2 4] ;
conf.numSpatialY = [2 4] ;
conf.quantizer = ‘kdtree‘ ;
conf.svm.C = 10 ;
conf.svm.solver = ‘sdca‘ ;
%conf.svm.solver = ‘sgd‘ ;
%conf.svm.solver = ‘liblinear‘ ;
conf.svm.biasMultiplier = 1 ;
conf.phowOpts = {‘Step‘ 3} ;
conf.clobber = false ;
conf.tinyProblem = true ;
conf.prefix = ‘baseline‘ ;
conf.randSeed = 1 ;
if conf.tinyProblem
conf.prefix = ‘tiny‘ ;
conf.numClasses = 5 ;
conf.numSpatialX = 2 ;
conf.numSpatialY = 2 ;
conf.numWords = 300 ;
conf.phowOpts = {‘Verbose‘ 2 ‘Sizes‘
- 上一篇:app inventor 打地鼠
- 下一篇:QQ,微信 emoji表情包
相关资源
- PCA算法融合多光谱图像和全色图像附
- OpenMv教程由入门到精通
- EEG信号小波特征提取开源
- 基于卷积神经网络的图像识别算法的
- 数字图像处理课程实验报告和源代码
- 基于VC的数字图像处理
- 数字图像处理 东南大学
- ZYNQ HLS 图像算法
- 图像处理基础算法源代码
- moire条纹图像处理
- 裂缝检测数字图像处理在裂缝识别与
- 纹理提取,图像处理中经常要用的特
- 《数字图像处理》第三版课后标准答
- 图像处理的论文,附有程序
- 同济大学数字图像处理作业
- keras实现的VGGface 特征提取,用来抽取
- 基于STM32车牌识别程序_带管理计费.
- 基于视觉显著性的图像分割PPT
- 数字图像处理数据集一-BSD68
- DM642图像板完整工程原理图、PCB及对应
- 小波十讲-PDF版本 详细讲解小波理论
- 流形学习方法在图像处理中的应用研
- 最小噪音分离MNF
- fessler图像处理文件包
- 武汉大学数字图像处理实习资料
- PC远程控制程序
- 数字图像处理大作业.zip
- 基于PCA的人脸特征提取
- 图像结合畸变矫正-数字图像处理
- 数字图像处理第三版中文及英文答案
评论
共有 条评论