资源简介
开源计算机视觉库,可以实现许多图像处理的算法
代码片段和文件信息
function phow_caltech101()
% PHOW_CALTECH101 Image classification in the Caltech-101 dataset
% This program demonstrates how to use VLFeat to construct an image
% classifier on the Caltech-101 data. The classifier uses PHOW
% features (dense SIFT) spatial histograms of visual words and a
% Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT
% kd-trees and homogeneous kernel map. The program also
% demonstrates VLFeat PEGASOS SVM solver although for this small
% dataset other solvers such as LIBLINEAR can be more efficient.
%
% By default 15 training images are used which should result in
% about 64% performance (a good performance considering that only a
% single feature type is being used).
%
% Call PHOW_CALTECH101 to train and test a classifier on a small
% subset of the Caltech-101 data. Note that the program
% automatically downloads a copy of the Caltech-101 data from the
% Internet if it cannot find a local copy.
%
% Edit the PHOW_CALTECH101 file to change the program configuration.
%
% To run on the entire dataset change CONF.TINYPROBLEM to FALSE.
%
% The Caltech-101 data is saved into CONF.CALDIR which defaults to
% ‘data/caltech-101‘. Change this path to the desired location for
% instance to point to an existing copy of the Caltech-101 data.
%
% The program can also be used to train a model on custom data by
% pointing CONF.CALDIR to it. Just create a subdirectory for each
% class and put the training images there. Make sure to adjust
% CONF.NUMTRAIN accordingly.
%
% Intermediate files are stored in the directory CONF.DATADIR. All
% such files begin with the prefix CONF.PREFIX which can be changed
% to test different parameter settings without overriding previous
% results.
%
% The program saves the trained model in
% /-model.mat. This model can be used to
% test novel images independently of the Caltech data.
%
% load(‘data/baseline-model.mat‘) ; # change to the model path
% label = model.classify(model im) ;
%
% Author: Andrea Vedaldi
% Copyright (C) 2011-2013 Andrea Vedaldi
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
conf.calDir = ‘data/caltech-101‘ ;
conf.dataDir = ‘data/‘ ;
conf.autoDownloadData = true ;
conf.numTrain = 15 ;
conf.numTest = 15 ;
conf.numClasses = 102 ;
conf.numWords = 600 ;
conf.numSpatialX = [2 4] ;
conf.numSpatialY = [2 4] ;
conf.quantizer = ‘kdtree‘ ;
conf.svm.C = 10 ;
conf.svm.solver = ‘sdca‘ ;
%conf.svm.solver = ‘sgd‘ ;
%conf.svm.solver = ‘liblinear‘ ;
conf.svm.biasMultiplier = 1 ;
conf.phowOpts = {‘Step‘ 3} ;
conf.clobber = false ;
conf.tinyProblem = true ;
conf.prefix = ‘baseline‘ ;
conf.randSeed = 1 ;
if conf.tinyProblem
conf.prefix = ‘tiny‘ ;
conf.numClasses = 5 ;
conf.numSpatialX = 2 ;
conf.numSpatialY = 2 ;
conf.numWords = 300 ;
conf.phowOpts = {‘Verbose‘ 2 ‘Sizes‘
- 上一篇:app inventor 打地鼠
- 下一篇:QQ,微信 emoji表情包
相关资源
- 冈萨雷斯 数字图像处理 源代码(m文
- qt图像处理
- 核主成分分析方法——特征提取,去
- 血液图像处理—细胞识别
- 基于Gabor滤波器的图像纹理特征提取
- VC数字图像处理课程设计
- 图像处理作业C 源代码
- SAR图像处理1
- Graphics Magic图像处理魔术师,含Delph
- 铝合金方波交流TIG焊熔池图像处理
- 基于图像处理的智能车寻迹算法设计
- 医学超声图像处理研究+哈尔滨工业大
- 友锋图像处理系统v3.rar(破解版
- 论文研究-基于优化Gabor滤波器和GMRF的
- 图像处理代码
- 图片-视频互换程序
- 基于图论的图像处理
- opencv视觉测距
- 北京交通大学-数字图像处理试卷+ 答
- 数字图像处理 王伟强 国科大 期末试
- 国科大图像处理作业王伟强老师.rar
- 国科大数字图像处理习题课重点
- 数字图像处理标准测试图片335张
- 哈尔滨工业大学深圳 数字图像处理
- 东南大学数字图像处理期末复习
- 2019国科大 王伟强 课程PPT+作业+中文翻
- 国科大图像处理期末考题2017(王伟强
- 数字图像处理课程设计 实验报告
- 国科大王伟强图像处理期末考试2018
- 国科大-图像处理与分析-2018期末试题
评论
共有 条评论