• 大小: 7.62MB
    文件类型: .rar
    金币: 1
    下载: 0 次
    发布日期: 2023-10-17
  • 语言: 其他
  • 标签: CourseraML  NlNLearning  

资源简介

Coursera Machine Learning 第五周week5 ex4Neural Networks Learning编程全套满分题目+注释

资源截图

代码片段和文件信息

function checkNNGradients(lambda)
%CHECKNNGRADIENTS Creates a small neural network to check the
%backpropagation gradients
%   CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
%   backpropagation gradients it will output the analytical gradients
%   produced by your backprop code and the numerical gradients (computed
%   using computeNumericalGradient). These two gradient computations should
%   result in very similar values.
%

if ~exist(‘lambda‘ ‘var‘) || isempty(lambda)
    lambda = 0;
end

input_layer_size = 3;
hidden_layer_size = 5;
num_labels = 3;
m = 5;

% We generate some ‘random‘ test data
Theta1 = debugInitializeWeights(hidden_layer_size input_layer_size);
Theta2 = debugInitializeWeights(num_labels hidden_layer_size);
% Reusing debugInitializeWeights to generate X
X  = debugInitializeWeights(m input_layer_size - 1);
y  = 1 + mod(1:m num_labels)‘;

% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];

% Short hand for cost function
costFunc = @(p) nnCostFunction(p input_layer_size hidden_layer_size ...
                               num_labels X y lambda);

[cost grad] = costFunc(nn_params);
numgrad = computeNumericalGradient(costFunc nn_params);

% Visually examine the two gradient computations.  The two columns
% you get should be very similar. 
disp([numgrad grad]);
fprintf([‘The above two columns you get should be very similar.\n‘ ...
         ‘(Left-Your Numerical Gradient Right-Analytical Gradient)\n\n‘]);

% Evaluate the norm of the difference between two solutions.  
% If you have a correct implementation and assuming you used EPSILON = 0.0001 
% in computeNumericalGradient.m then diff below should be less than 1e-9
diff = norm(numgrad-grad)/norm(numgrad+grad);

fprintf([‘If your backpropagation implementation is correct then \n‘ ...
         ‘the relative difference will be small (less than 1e-9). \n‘ ...
         ‘\nRelative Difference: %g\n‘] diff);

end

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件       1950  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\checkNNGradients.m

     文件       1095  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\computeNumericalGradient.m

     文件        841  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\debugInitializeWeights.m

     文件       1502  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\displayData.m

     文件       8263  2017-12-10 10:20  machine-learning-ex4\machine-learning-ex4\ex4\ex4.m

     文件    7511764  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\ex4data1.mat

     文件      79592  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\ex4weights.mat

     文件       8749  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\fmincg.m

     文件       1624  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\AUTHORS.txt

     文件       3862  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\ChangeLog.txt

     文件        881  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\jsonopt.m

     文件       1551  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\LICENSE_BSD.txt

     文件      18732  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\loadjson.m

     文件      15574  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\loadubjson.m

     文件        771  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\mergestruct.m

     文件      19369  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\README.txt

     文件      17462  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\savejson.m

     文件      16123  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\saveubjson.m

     文件       1094  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab\varargin2struct.m

     文件       1195  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\makeValidFieldName.m

     文件       5562  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\submitWithConfiguration.m

     文件       5633  2017-12-10 09:53  machine-learning-ex4\machine-learning-ex4\ex4\nnCostFunction.m

     文件        585  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\predict.m

     文件        985  2017-12-09 10:05  machine-learning-ex4\machine-learning-ex4\ex4\randInitializeWeights.m

     文件        137  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\sigmoid.m

     文件        739  2017-12-09 09:58  machine-learning-ex4\machine-learning-ex4\ex4\sigmoidGradient.m

     文件       1635  2017-12-08 16:48  machine-learning-ex4\machine-learning-ex4\ex4\submit.m

     文件        262  2017-12-10 10:22  machine-learning-ex4\machine-learning-ex4\ex4\token.mat

     文件     356692  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4.pdf

     目录          0  2017-03-13 18:40  machine-learning-ex4\machine-learning-ex4\ex4\lib\jsonlab

............此处省略7个文件信息

评论

共有 条评论

相关资源