-
大小: 7.47MB文件类型: .gz金币: 1下载: 0 次发布日期: 2023-11-02
- 语言: 其他
- 标签: scikit-learn python
资源简介
scikit-learn-0.17.tar.gz
代码片段和文件信息
#! /usr/bin/env python
#
# Copyright (C) 2007-2009 Cournapeau David
# 2010 Fabian Pedregosa
# License: 3-clause BSD
descr = “““A set of python modules for machine learning and data mining“““
import sys
import os
import shutil
from distutils.command.clean import clean as Clean
from pkg_resources import parse_version
if sys.version_info[0] < 3:
import __builtin__ as builtins
else:
import builtins
# This is a bit (!) hackish: we are setting a global variable so that the main
# sklearn __init__ can detect if it is being loaded by the setup routine to
# avoid attempting to load components that aren‘t built yet:
# the numpy distutils extensions that are used by scikit-learn to recursively
# build the compiled extensions in sub-packages is based on the Python import
# machinery.
builtins.__SKLEARN_SETUP__ = True
DISTNAME = ‘scikit-learn‘
DEscriptION = ‘A set of python modules for machine learning and data mining‘
with open(‘README.rst‘) as f:
LONG_DEscriptION = f.read()
MAINTAINER = ‘Andreas Mueller‘
MAINTAINER_EMAIL = ‘amueller@ais.uni-bonn.de‘
URL = ‘http://scikit-learn.org‘
LICENSE = ‘new BSD‘
DOWNLOAD_URL = ‘http://sourceforge.net/projects/scikit-learn/files/‘
# We can actually import a restricted version of sklearn that
# does not need the compiled code
import sklearn
VERSION = sklearn.__version__
# Optional setuptools features
# We need to import setuptools early if we want setuptools features
# as it monkey-patches the ‘setup‘ function
# For some commands use setuptools
SETUPTOOLS_COMMANDS = set([
‘develop‘ ‘release‘ ‘bdist_egg‘ ‘bdist_rpm‘
‘bdist_wininst‘ ‘install_egg_info‘ ‘build_sphinx‘
‘egg_info‘ ‘easy_install‘ ‘upload‘ ‘bdist_wheel‘
‘--single-version-externally-managed‘
])
if SETUPTOOLS_COMMANDS.intersection(sys.argv):
import setuptools
extra_setuptools_args = dict(
zip_safe=False # the package can run out of an .egg file
include_package_data=True
)
else:
extra_setuptools_args = dict()
# Custom clean command to remove build artifacts
class CleanCommand(Clean):
description = “Remove build artifacts from the source tree“
def run(self):
Clean.run(self)
if os.path.exists(‘build‘):
shutil.rmtree(‘build‘)
for dirpath dirnames filenames in os.walk(‘sklearn‘):
for filename in filenames:
if (filename.endswith(‘.so‘) or filename.endswith(‘.pyd‘)
or filename.endswith(‘.dll‘)
or filename.endswith(‘.pyc‘)):
os.unlink(os.path.join(dirpath filename))
for dirname in dirnames:
if dirname == ‘__pycache__‘:
shutil.rmtree(os.path.join(dirpath dirname))
cmdclass = {‘clean‘: CleanCommand}
# Optional wheelhouse-uploader features
# To automate release of binary packages for scikit-learn we need a tool
# to download the pa
- 上一篇:百度对象存储BOS
- 下一篇:zcu10_PS端LED开关工程
相关资源
- Pythonamp;课堂amp;笔记(高淇amp;400;集第
- Python中Numpy库最新教程
- 用python编写的移动彩信的发送程序
- Python全栈学习笔记面向对象大作业:
- python实现的ftp自动上传、下载脚本
- Python版的A*寻路算法
- IronPython IDE
- pip-10.0.1.tar.gz
- Data Science from Scratch 2nd Edition
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 爬取豆瓣电影TOP250程序,包含非常详
- 中文维基百科语料库百度网盘网址.
- MSCNN_dehaze.rar
- 爬取豆瓣排行榜电影数据(含GUI界面
- 字典文本资源
- Brainfuck / OoK 解码脚本
- 案例实战信用卡欺诈检测数据集
- Hands-On Machine Learning with Scikit-Learn an
- 招商策略_抱团启示录那些年我们一起
- sip-4.19.zip
- 树莓派3b+学习使用教程
- numpy 中文学习手册
- pytorch-1.4.0-py3.7_cpu_0.tar.bz2
- 机器学习实战 高清完整版PDF
- 泰坦尼克号0.81准确率实验报告.docx
-
abaqus sc
ripting reference manual.pdf - 网页版聊天程序--网络程序设计课程大
- Give Me Some Credit
-
ba
semap安装出错时,正确得pyproj文件 - 微信头像拼接工具
评论
共有 条评论