资源简介
关于数据预处理,特征选择的主要技术原理,包括特征离散化,特征交叉,单特征/多特征AUC,残差分析,方差选择法,卡方检验,互信息特征选择,逻辑回归计算特征重要度,距离相关系数,衡量数据分布的箱线图介绍等。
代码片段和文件信息
- 上一篇:FPGA实现的DS18B20温度传感器
- 下一篇:编译原理 (第二版) 张素琴
相关资源
- ppt 机器学习.ppt
- Logistic回归总结非常好的机器学习总结
- FEATURE SELECTION FOR KNOWLEDGE DISCOVERY AND
- Convex Analysis and Optimization (Bertsekas
- 机器学习个人笔记完整版v5.2-A4打印版
- JUNIOR:粒子物理学中无监督机器学习
- 语料库.zip
- 中国科学技术大学 研究生课程 机器学
- 遗传算法越野小车unity5.5
- 吴恩达机器学习编程题
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 机器学习实战高清pdf,中文版+英文版
- 李宏毅-机器学习(视频2017完整)
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- Wikipedia机器学习迷你电子书之四《D
- Learning From Data Yaser S. Abu-Mostafa
- 马尔科夫模型进行数据预测
- 北大林宙辰:机器学习一阶算法的优
- 李宏毅深度学习ppt
- 机器学习方法R实现-用决策树、神经网
- 数字金融反欺诈白皮书
- 机器学习班PPT原件全邹博
- 机器学习实战(源码和数据样本)
- 计算广告含有目录 刘鹏版
- 数据挖掘导论完整版PPT及课后习题答
- kaggle信用卡欺诈数据
- 模式识别之特征选择
- 机器学习技法原始讲义和课程笔记
- 机器学习数学 陈希孺《 概率论与数理
评论
共有 条评论