资源简介
本资源包含一个Mnist手写体的训练脚本,可在环境配置好的情况下直接训练学习模型,然后可以根据模型输入任意照片,预测结果,直接可用,适合入门者。

代码片段和文件信息
# Copyright 2016 Niek Temme.
# Adapted form the on the MNIST expert tutorial by Google.
#
# Licensed under the Apache License Version 2.0 (the “License“);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing software
# distributed under the License is distributed on an “AS IS“ BASIS
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
“““A very simple MNIST classifier.
Documentation at
http://niektemme.com/ @@to do
This script is based on the Tensoflow MNIST expert tutorial
See extensive documentation for the tutorial at
https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html
“““
#import modules
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#import data
mnist = input_data.read_data_sets(“../data/“ one_hot=True)
sess = tf.InteractiveSession()
# Create the model
x = tf.placeholder(tf.float32 [None 784])
y_ = tf.placeholder(tf.float32 [None 10])
W = tf.Variable(tf.zeros([784 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x W) + b)
def weight_variable(shape):
initial = tf.truncated_normal(shape stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1 shape=shape)
return tf.Variable(initial)
def conv2d(x W):
return tf.nn.conv2d(x W strides=[1 1 1 1] padding=‘SAME‘)
def max_pool_2x2(x):
return tf.nn.max_pool(x ksize=[1 2 2 1]
strides=[1 2 2 1] padding=‘SAME‘)
W_conv1 = weight_variable([5 5 1 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x [-128281])
h_conv1 = tf.nn.relu(conv2d(x_image W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5 5 32 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1 W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2 [-1 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1 keep_prob)
W_fc2 = weight_variable([1024 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop W_fc2) + b_fc2)
# Define loss and optimizer
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv1) tf.argmax(y_1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction tf.float32))
“““
Train the model and save the model to disk as a model2.ckpt file
file is stored in the same directory as this
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3979 2017-11-07 11:47 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\create_model_2.py
文件 5227 2017-11-07 13:46 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\predict_2.py
文件 7840016 1998-01-26 23:07 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\t10k-images.idx3-ubyte
文件 10008 1998-01-26 23:07 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\t10k-labels.idx1-ubyte
文件 47040016 1996-11-18 23:36 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\train-images.idx3-ubyte
文件 60008 1996-11-18 23:36 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\train-labels.idx1-ubyte
目录 0 2017-11-07 20:06 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\
- 上一篇:Ubuntu完全教程 .pdf
- 下一篇:Unity3D掷筛子游戏源码
相关资源
- ddos压力测试工具99657
- GBT 15532-2008 计算机软件测试规范
- 清翔电子MCS51开发板资料_新版 01_开发
- PCIe速度测试例程
- Labview与CH372CH375的通信测试
- 德卡D3读卡器测试程序驱动文件
- stm32 ds18b20 温度传感器 测试通过
- ADNS-3080光流传感器测试程序Arduino
- 一个测试报告的模板,有点用
- 音频测试软件
- GIS项目开发文档(分析、设计、实现
- 2410的led测试程序keil可以用
- 报文模拟仿真测试工具2.0
- 短信测试软件
- 硬件测试面试常见题PDF
- Junit4单元测试
- 软件方法测试RTX时钟
- 软件工程文档模板1可行性研究报告
- 历年深信服软件测试师考试题
- VC 6 Modbus RTU测试程序
- 小学数学测试成绩查询软件
- 一个不错的测试用例计划——物业管
- 哲学家进餐问题 算法 vc源代码 测试通
- CD7110客显测试程序
- 软件开发过程文档(开发大纲 编写规
- pb (powerbuilder) 编写的自动转台控制
- 学生心理测试系统!!!
- 物业管理系统测试计划范文
- autoit自动化测试小工具及帮助(二)
- 61850客户端服务端测试程序
评论
共有 条评论