资源简介
本资源包含一个Mnist手写体的训练脚本,可在环境配置好的情况下直接训练学习模型,然后可以根据模型输入任意照片,预测结果,直接可用,适合入门者。
代码片段和文件信息
# Copyright 2016 Niek Temme.
# Adapted form the on the MNIST expert tutorial by Google.
#
# Licensed under the Apache License Version 2.0 (the “License“);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing software
# distributed under the License is distributed on an “AS IS“ BASIS
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
“““A very simple MNIST classifier.
Documentation at
http://niektemme.com/ @@to do
This script is based on the Tensoflow MNIST expert tutorial
See extensive documentation for the tutorial at
https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html
“““
#import modules
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#import data
mnist = input_data.read_data_sets(“../data/“ one_hot=True)
sess = tf.InteractiveSession()
# Create the model
x = tf.placeholder(tf.float32 [None 784])
y_ = tf.placeholder(tf.float32 [None 10])
W = tf.Variable(tf.zeros([784 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x W) + b)
def weight_variable(shape):
initial = tf.truncated_normal(shape stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1 shape=shape)
return tf.Variable(initial)
def conv2d(x W):
return tf.nn.conv2d(x W strides=[1 1 1 1] padding=‘SAME‘)
def max_pool_2x2(x):
return tf.nn.max_pool(x ksize=[1 2 2 1]
strides=[1 2 2 1] padding=‘SAME‘)
W_conv1 = weight_variable([5 5 1 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x [-128281])
h_conv1 = tf.nn.relu(conv2d(x_image W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5 5 32 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1 W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2 [-1 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1 keep_prob)
W_fc2 = weight_variable([1024 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop W_fc2) + b_fc2)
# Define loss and optimizer
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv1) tf.argmax(y_1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction tf.float32))
“““
Train the model and save the model to disk as a model2.ckpt file
file is stored in the same directory as this
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3979 2017-11-07 11:47 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\create_model_2.py
文件 5227 2017-11-07 13:46 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\predict_2.py
文件 7840016 1998-01-26 23:07 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\t10k-images.idx3-ubyte
文件 10008 1998-01-26 23:07 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\t10k-labels.idx1-ubyte
文件 47040016 1996-11-18 23:36 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\train-images.idx3-ubyte
文件 60008 1996-11-18 23:36 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\train-labels.idx1-ubyte
目录 0 2017-11-07 20:06 Mnist手写体训练脚本和测试脚本(含训练集和测试集)\
- 上一篇:Ubuntu完全教程 .pdf
- 下一篇:Unity3D掷筛子游戏源码
相关资源
- 实习期一个WEB项目的测试用例
- 适合图像处理测试用各种人脸库人脸
- nandflash测试程序
- USACO全部的测试数据
- Wolftools 渗透测试神器
- siege-windows-3.0.5 压力测试
- sokit TCP/UDP 数据包收发测试(调试)工
- 毕业论文_软件测试技术的研究和自动
- MLX90614非接触式红外测温测试代码
- 北京大学语料库1 833 177 字包含训练和
- STM32测试ST7920 LCD12864串并简单程序
- ISO12233标准-第二版-2014
- Nunit 测试工具的源码
- NOIP2009复赛试题及测试数据.
- 测试与计量技术基础_西安交大
- MM7模拟工具,可以进行彩信收发测试
- 系统测试报告web测试模板
- 101 104规约测试器与模拟器
- 基于DE2 115开发板的SRAM测试代码
- 并行flash FPGA读写测试,Verilog语言
- 摄像头Camera图像测试项目及简介——
- 东菱交流伺服驱动器测试大纲
- SNMP测试工具
- H.264 SVC FSVM测试模型
- stm32f103的stop模式测试例程
- 测试驱动开发_中文版+英文版(Kent
- OMG测试小组.rar
- 测试与计量技术基础 周渭
- 软件测试 金融项目第4期
- STM32F103C8T6核心板测试代码点灯库函数
评论
共有 条评论